Greatest Common Divisor, Bezout coefficients, Java version
Computation of the greatest common divisor, and proof of the existence of the so-called Bezout coefficient
Auteurs: Claude Marché
Catégories: Arithmetic / Ghost code / Divisibility
Outils: Krakatoa
see also the index (by topic, by tool, by reference, by year)
//@+ CheckArithOverflow = no /* complements for non-linear integer arithmetic */ /*@ lemma distr_right: @ \forall integer x y z; x*(y+z) == (x*y)+(x*z); @*/ /*@ lemma distr_left: @ \forall integer x y z; (x+y)*z == (x*z)+(y*z); @*/ /*@ lemma distr_right_minus: @ \forall integer x y z; x*(y-z) == (x*y)-(x*z); @*/ /*@ lemma distr_left_minus: @ \forall integer x y z; (x-y)*z == (x*z)-(y*z); @*/ /*@ lemma mul_comm: @ \forall integer x y; x*y == y*x; @*/ /*@ lemma mul_assoc: @ \forall integer x y z; x*(y*z) == (x*y)*z; @*/ /*@ predicate divides(integer x, integer y) = @ \exists integer q; y == q*x ; @*/ /*@ lemma div_mod_property: @ \forall integer x y; @ x >=0 && y > 0 ==> x%y == x - y*(x/y); @*/ /*@ lemma mod_property: @ \forall integer x y; @ x >=0 && y > 0 ==> 0 <= x%y && x%y < y; @*/ /*@ predicate isGcd(integer a, integer b, integer d) = @ divides(d,a) && divides(d,b) && @ \forall integer z; @ divides(z,a) && divides(z,b) ==> divides(z,d) ; @*/ /*@ lemma gcd_zero : @ \forall integer a; isGcd(a,0,a) ; @*/ /*@ lemma gcd_property : @ \forall integer a b d q; @ b > 0 && isGcd(b,a % b,d) ==> isGcd(a,b,d) ; @*/ class Gcd { /*@ requires x >= 0 && y >= 0; @ behavior resultIsGcd: @ ensures isGcd(x,y,\result) ; @ behavior bezoutProperty: @ ensures \exists integer a b; a*x+b*y == \result; @*/ static int gcd(int x, int y) { //@ ghost integer a = 1, b = 0, c = 0, d = 1; /*@ loop_invariant @ x >= 0 && y >= 0 && @ (\forall integer d ; isGcd(x,y,d) ==> @ \at(isGcd(x,y,d),Pre)) && @ a*\at(x,Pre)+b*\at(y,Pre) == x && @ c*\at(x,Pre)+d*\at(y,Pre) == y ; @ loop_variant y; @*/ while (y > 0) { int r = x % y; //@ ghost integer q = x / y; x = y; y = r; //@ ghost integer ta = a, tb = b; //@ ghost a = c; //@ ghost b = d; //@ ghost c = ta - c * q; //@ ghost d = tb - d * q; } return x; } }