FoVeOOS'11 Competition: challenge 2, in Java
Maximum of a tree of integers, in Java
Authors: Claude Marché
Topics: Trees
References: The COST FoVeOOS'11 Competition
see also the index (by topic, by tool, by reference, by year)
//@+ TerminationPolicy = user /*@ axiomatic integer_max { @ logic integer max(integer x, integer y); @ axiom max_is_ge : \forall integer x y; max(x,y) >= x && max(x,y) >= y; @ axiom max_is_some : \forall integer x y; max(x,y) == x || max(x,y) == y; @ } @*/ class Int { //@ ensures \result == max(x,y); public static int max(int x, int y); } /*@ axiomatic Mem { @ predicate mem{L}(int x, Tree t); @ axiom mem_null{L}: \forall int x; ! mem(x,null); @ axiom mem_root{L}: \forall Tree t; t != null ==> @ mem(t.value,t); @ axiom mem_root_eq{L}: \forall int x, Tree t; t != null ==> @ x==t.value ==> mem(x,t); @ axiom mem_left{L}: \forall int x, Tree t; t != null ==> @ mem(x,t.left) ==> mem(x,t); @ axiom mem_right{L}: \forall int x, Tree t; t != null ==> @ mem(x,t.right) ==> mem(x,t); @ axiom mem_inversion{L}: \forall int x, Tree t; @ mem(x,t) ==> t != null && @ (x==t.value || mem(x,t.left) || mem(x,t.right)); @ } @*/ /* attempt to prove termination, not succesful yet */ /* axiomatic Finite { @ predicate has_size{L}(Tree t, integer s); @ axiom has_size_null{L}: has_size(null,0); @ axiom has_size_non_null{L}: \forall Tree t; t != null ==> @ \forall integer s1 s2; @ has_size(t.left,s1) && has_size(t.right,s2) ==> @ has_size(t,s1+s2+1) ; @ axiom has_size_inversion{L}: \forall Tree t, integer s; @ has_size(t,s) ==> @ (t == null && s == 0) || @ (t != null && \exists integer s1 s2; @ has_size(t.left,s1) && has_size(t.right,s2) && @ 0 <= s1 && 0 <= s2 && s == s1+s2+1) ; @ predicate size_decreases{L}(Tree t1, Tree t2) = @ \exists integer s1 s2; has_size(t1,s1) && has_size(t2,s2) && s1 > s2; @ } @*/ class Tree { int value; Tree left; Tree right; /*@ // requires \exists integer s; has_size(this,s); @ // decreases this for size_decreases; @ ensures mem(\result,this) && @ \forall int x; mem(x,this) ==> \result >= x; @*/ int tree_max() { int m = value; if (left != null) m = Int.max(m,left.tree_max()); if (right != null) m = Int.max(m,right.tree_max()); return m; } }