Algorithm 65 (find)
Hoare's Algorithm 65
Auteurs: Jean-Christophe Filliâtre
Catégories: Array Data Structure
Outils: Why3
see also the index (by topic, by tool, by reference, by year)
module Algo65 use int.Int use ref.Ref use array.Array use array.ArrayPermut (* algorithm 63 *) val partition (a: array int) (m n: int) (i j: ref int) (ghost x: ref int) : unit requires { 0 <= m < n < length a } writes { a, i, j } ensures { m <= !j < !i <= n } ensures { permut_sub (old a) a m (n+1) } ensures { forall r:int. m <= r <= !j -> a[r] <= !x } ensures { forall r:int. !j < r < !i -> a[r] = !x } ensures { forall r:int. !i <= r <= n -> a[r] >= !x } (* Algorithm 65 (fixed version) *) let rec find (a: array int) (m n: int) (k: int) : unit requires { 0 <= m <= k <= n < length a } variant { n - m } ensures { permut_sub (old a) a m (n+1) } ensures { forall r:int. m <= r <= k -> a[r] <= a[k] } ensures { forall r:int. k <= r <= n -> a[k] <= a[r] } = if m < n then begin let i = ref 0 in let j = ref 0 in let ghost x = ref 42 in partition a m n i j x; label L1 in if k <= !j then find a m !j k; assert { permut_sub (a at L1) a m (n+1) }; assert { forall r:int. !j < r <= n -> a[r] = (a at L1)[r] }; assert { forall r:int. m <= r <= !j -> (exists s:int. m <= s <= !j /\ a[r] = (a at L1)[s]) && a[r] <= a[!j+1] }; label L2 in if !i <= k then find a !i n k; assert { permut_sub (a at L2) a m (n+1) }; assert { forall r:int. m <= r < !i -> a[r] = (a at L2)[r] }; assert { forall r:int. !i <= r <= n -> (exists s:int. !i <= s <= n /\ a[r] = (a at L2)[s]) && a[r] >= a[!i-1] } end end
download ZIP archive