Wiki Agenda Contact English version

Algorithm 65 (find)

Hoare's Algorithm 65


Auteurs: Jean-Christophe Filliâtre

Catégories: Array Data Structure

Outils: Why3

see also the index (by topic, by tool, by reference, by year)


module Algo65

  use int.Int
  use ref.Ref
  use array.Array
  use array.ArrayPermut

  (* algorithm 63 *)

  val partition (a: array int) (m n: int) (i j: ref int) (ghost x: ref int) :
    unit
    requires { 0 <= m < n < length a }
    writes   { a, i, j }
    ensures  { m <= !j < !i <= n }
    ensures  { permut_sub (old a) a m (n+1) }
    ensures  { forall r:int. m <= r <= !j -> a[r] <= !x }
    ensures  { forall r:int. !j < r < !i -> a[r] = !x }
    ensures  { forall r:int. !i <= r <= n -> a[r] >= !x }

  (* Algorithm 65 (fixed version) *)

  let rec find (a: array int) (m n: int) (k: int) : unit
    requires { 0 <= m <= k <= n < length a }
    variant  { n - m }
    ensures  { permut_sub (old a) a m (n+1) }
    ensures  { forall r:int. m <= r <= k -> a[r] <= a[k] }
    ensures  { forall r:int. k <= r <= n -> a[k] <= a[r] }
  = if m < n then begin
      let i = ref 0 in
      let j = ref 0 in
      let ghost x = ref 42 in
      partition a m n i j x;
    label L1 in
      if k <= !j then find a m !j k;
      assert { permut_sub (a at L1) a m (n+1) };
      assert { forall r:int. !j < r <= n -> a[r] = (a at L1)[r] };
      assert { forall r:int. m <= r <= !j ->
        (exists s:int. m <= s <= !j /\ a[r] = (a at L1)[s]) &&
        a[r] <= a[!j+1] };
    label L2 in
      if !i <= k then find a !i n k;
      assert { permut_sub (a at L2) a m (n+1) };
      assert { forall r:int. m <= r < !i -> a[r] = (a at L2)[r] };
      assert { forall r:int. !i <= r <= n ->
        (exists s:int. !i <= s <= n /\ a[r] = (a at L2)[s]) &&
        a[r] >= a[!i-1] }
    end

end

download ZIP archive