Wiki Agenda Contact English version

Braun Trees

Purely applicative heaps implemented with Braun trees


Auteurs: Jean-Christophe Filliâtre

Catégories: Data Structures

Outils: Why3

see also the index (by topic, by tool, by reference, by year)


Purely applicative heaps implemented with Braun trees.

Braun trees are binary trees where, for each node, the left subtree has the same size of the right subtree or is one element larger (predicate [inv]).

Consequently, a Braun tree has logarithmic height (lemma [inv_height]). The nice thing with Braun trees is that we do not need extra information to ensure logarithmic height.

We also prove an algorithm from Okasaki to compute the size of a braun tree in time O(log^2(n)) (function [fast_size]).

Author: Jean-Christophe Filliâtre (CNRS)

module BraunHeaps

  use int.Int
  use bintree.Tree
  use export bintree.Size
  use export bintree.Occ

  type elt

  val predicate le elt elt

  clone relations.TotalPreOrder with type t = elt, predicate rel = le, axiom .

  (* [e] is no greater than the root of [t], if any *)
  let predicate le_root (e: elt) (t: tree elt) = match t with
    | Empty -> true
    | Node _ x _ -> le e x
  end

  predicate heap (t: tree elt) = match t with
    | Empty      -> true
    | Node l x r -> le_root x l && heap l && le_root x r && heap r
  end

  function minimum (tree elt) : elt
  axiom minimum_def: forall l x r. minimum (Node l x r) = x

  predicate is_minimum (x: elt) (t: tree elt) =
    mem x t && forall e. mem e t -> le x e

  (* the root is the smallest element *)
  let rec lemma root_is_min (t: tree elt) : unit
     requires { heap t && 0 < size t }
     ensures  { is_minimum (minimum t) t }
     variant  { t }
  = let Node l _ r = t in
    if not is_empty l then root_is_min l;
    if not is_empty r then root_is_min r

  predicate inv (t: tree elt) = match t with
  | Empty      -> true
  | Node l _ r -> (size l = size r || size l = size r + 1) && inv l && inv r
  end

  let constant empty : tree elt = Empty
    ensures { heap result }
    ensures { inv result }
    ensures { size result = 0 }
    ensures { forall e. not (mem e result) }

  let get_min (t: tree elt) : elt
    requires { heap t && 0 < size t }
    ensures  { result = minimum t }
  =
    match t with
      | Empty      -> absurd
      | Node _ x _ -> x
    end

  let rec add (x: elt) (t: tree elt) : tree elt
    requires { heap t }
    requires { inv t }
    variant  { t }
    ensures  { heap result }
    ensures  { inv result }
    ensures  { occ x result = occ x t + 1 }
    ensures  { forall e. e <> x -> occ e result = occ e t }
    ensures  { size result = size t + 1 }
  =
    match t with
    | Empty ->
        Node Empty x Empty
    | Node l y r ->
        if le x y then
          Node (add y r) x l
        else
          Node (add x r) y l
    end

  let rec extract (t: tree elt) : (elt, tree elt)
     requires { heap t }
     requires { inv t }
     requires { 0 < size t }
     variant  { t }
     ensures  { let e, t' = result in
                heap t' && inv t' && size t' = size t - 1 &&
                occ e t' = occ e t - 1 &&
                forall x. x <> e -> occ x t' = occ x t }
  =
    match t with
    | Empty ->
        absurd
    | Node Empty y r ->
        assert { r = Empty };
        y, Empty
    | Node l y r ->
        let x, l = extract l in
        x, Node r y l
    end

  let rec replace_min (x: elt) (t: tree elt) : tree elt
    requires { heap t }
    requires { inv t }
    requires { 0 < size t }
    variant  { t }
    ensures  { heap result }
    ensures  { inv result }
    ensures  { if x = minimum t then occ x result = occ x t
               else occ x result = occ x t + 1 &&
                    occ (minimum t) result = occ (minimum t) t - 1 }
    ensures  { forall e. e <> x -> e <> minimum t -> occ e result = occ e t }
    ensures  { size result = size t }
  =
    match t with
    | Node l _ r ->
        if le_root x l && le_root x r then
          Node l x r
        else
          let lx = get_min l in
          if le_root lx r then
            (* lx <= x, rx necessarily *)
            Node (replace_min x l) lx r
          else
            (* rx <= x, lx necessarily *)
            Node l (get_min r) (replace_min x r)
    | Empty ->
        absurd
    end

  let rec merge (l r: tree elt) : tree elt
    requires { heap l && heap r }
    requires { inv l && inv r }
    requires { size r <= size l <= size r + 1 }
    ensures  { heap result }
    ensures  { inv result }
    ensures  { forall e. occ e result = occ e l + occ e r }
    ensures  { size result = size l + size r }
    variant  { size l + size r }
  =
    match l, r with
    | _, Empty ->
        l
    | Node ll lx lr, Node _ ly _ ->
        if le lx ly then
          Node r lx (merge ll lr)
        else
          let x, l = extract l in
          Node (replace_min x r) ly l
    | Empty, _ ->
        absurd
    end

  let remove_min (t: tree elt) : tree elt
    requires { heap t }
    requires { inv t }
    requires { 0 < size t }
    ensures  { heap result }
    ensures  { inv result }
    ensures  { occ (minimum t) result = occ (minimum t) t - 1 }
    ensures  { forall e. e <> minimum t -> occ e result = occ e t }
    ensures  { size result = size t - 1 }
  =
    match t with
      | Empty      -> absurd
      | Node l _ r -> merge l r
    end

The size of a Braun tree can be computed in time O(log^2(n))

from Three Algorithms on Braun Trees (Functional Pearl) Chris Okasaki J. Functional Programming 7 (6) 661–666, November 1997

  use int.ComputerDivision

  let rec diff (m: int) (t: tree elt) : int
    requires { inv t }
    requires { 0 <= m <= size t <= m + 1 }
    variant  { t }
    ensures  { size t = m + result }
  = match t with
    | Empty ->
        0
    | Node l _ r ->
        if m = 0 then
          1
        else if mod m 2 = 1 then
          (* m = 2k + 1  *)
          diff (div m 2) l
        else
          (* m = 2k + 2 *)
          diff (div (m - 1) 2) r
    end

  let rec fast_size (t: tree elt) : int
    requires { inv t}
    variant  { t }
    ensures  { result = size t }
  =
    match t with
    | Empty      -> 0
    | Node l _ r -> let m = fast_size r in 1 + 2 * m + diff m l
    end

A Braun tree has a logarithmic height

  use bintree.Height
  use int.Power

  let rec lemma size_height (t1 t2: tree elt)
    requires { inv t1 && inv t2 }
    variant  { size t1 + size t2 }
    ensures  { size t1 >= size t2 -> height t1 >= height t2 }
  = match t1, t2 with
    | Node l1 _ r1, Node l2 _ r2 ->
        size_height l1 l2;
        size_height r1 r2
    | _ ->
        ()
    end

  let rec lemma inv_height (t: tree elt)
    requires { inv t }
    variant  { t }
    ensures  { size t > 0 ->
               let h = height t in power 2 (h-1) <= size t < power 2 h }
  = match t with
    | Empty | Node Empty _ _ ->
        ()
    | Node l _ r ->
        let h = height t in
        assert { height l = h-1 };
        inv_height l;
        inv_height r
    end

end

download ZIP archive

Why3 Proof Results for Project "braun_trees"

Theory "braun_trees.BraunHeaps": fully verified

ObligationsAlt-Ergo 2.4.2CVC4 1.5CVC4 1.7
VC for root_is_min8.79------
VC for empty0.00------
VC for get_min0.00------
VC for add---------
split_vc
variant decrease------0.06
precondition------0.04
precondition------0.05
variant decrease------0.07
precondition------0.04
precondition------0.06
postcondition---------
split_vc
postcondition------0.05
postcondition1.39------
postcondition---------
split_vc
postcondition------0.06
postcondition------0.07
postcondition---------
split_vc
postcondition------0.07
postcondition------0.09
postcondition---------
split_vc
postcondition------0.07
postcondition------0.08
postcondition---------
split_vc
postcondition------0.06
postcondition------0.07
VC for extract1.86------
VC for replace_min---------
split_goal_right
precondition0.01------
variant decrease0.01------
precondition0.01------
precondition0.01------
precondition0.02------
variant decrease0.01------
precondition0.01------
precondition0.01------
precondition0.02------
precondition0.01------
unreachable point0.00------
postcondition5.19---0.38
postcondition0.08------
postcondition0.08------
postcondition2.60------
postcondition0.02------
VC for merge---------
split_goal_right
variant decrease0.01------
precondition0.00------
precondition0.01------
precondition0.02------
precondition0.00------
precondition0.00------
precondition0.01------
precondition0.01------
precondition0.00------
precondition0.01------
unreachable point0.00------
postcondition------0.58
postcondition0.21------
postcondition0.29------
postcondition0.07------
VC for remove_min0.03------
VC for diff0.49------
VC for fast_size0.02------
VC for size_height0.12------
VC for inv_height---------
split_goal_right
assertion0.06------
variant decrease0.01------
precondition0.01------
variant decrease0.01------
precondition0.01------
postcondition---0.07---