## Coincidence count

Topics: Array Data Structure

Tools: Why3

see also the index (by topic, by tool, by reference, by year)

Coincidence count

Exercise proposed by Rustan Leino at Dagstuhl seminar 14171, April 2014

You are given two sequences of integers, sorted in increasing order and without duplicate elements, and you count the number of elements that appear in both sequences (in linear time and constant space).

```module CoincidenceCount

use int.Int
use array.Array
use ref.Refint
use set.FsetInt

function setof (a: array 'a) : fset 'a =
map (fun x -> a[x]) (interval 0 (length a))

function drop (a: array 'a) (n: int) : fset 'a =
map (fun x -> a[x]) (interval n (length a))

lemma drop_left:
forall a: array 'a, n: int. 0 <= n < length a ->
drop a n == add a[n] (drop a (n+1))

predicate increasing (a: array int) =
forall i j. 0 <= i < j < length a -> a[i] < a[j]

function cc (a b: array int) : int =
cardinal (inter (setof a) (setof b))

lemma not_mem_inter_r:
forall a: array int, i: int, s: fset int. 0 <= i < length a ->
not (mem a[i] s) -> inter (drop a i) s == inter (drop a (i+1)) s

lemma not_mem_inter_l:
forall a: array int, i: int, s: fset int. 0 <= i < length a ->
not (mem a[i] s) -> inter s (drop a i) == inter s (drop a (i+1))

let coincidence_count (a b: array int) : int
requires { increasing a }
requires { increasing b }
ensures  { result = cc a b }
=
let ref i = 0 in
let ref j = 0 in
let ref c = 0 in
while i < length a && j < length b do
invariant { 0 <= i <= length a }
invariant { 0 <= j <= length b }
invariant { c + cardinal (inter (drop a i) (drop b j)) = cc a b }
variant   { length a - i + length b - j }
if a[i] < b[j] then
incr i
else if a[i] > b[j] then
incr j
else begin
assert { inter (drop a i) (drop b j) ==
add a[i] (inter (drop a (i+1)) (drop b (j+1))) };
assert { not (mem a[i] (drop a (i+1))) };
incr i;
incr j;
incr c
end
done;
c

end

```

Variant using bags, from Rustan Leino's book "Program Proofs"

```module CoincidenceCountBag

use int.Int
use array.Array
use ref.Refint
use bag.Bag

predicate increasing (a: array int) =
forall i j. 0 <= i < j < length a -> a[i] <= a[j]

let rec ghost function bagofsub (a: array 'a) (lo hi: int) : bag 'a
requires { 0 <= lo <= hi <= length a } variant { hi - lo }
= if lo >= hi then empty_bag else add a[lo] (bagofsub a (lo + 1) hi)

function bagof (a: array 'a) : bag 'a =
bagofsub a 0 (length a)

function drop (a: array 'a) (i: int) : bag 'a =
bagofsub a i (length a)

lemma not_mem_inter_r:
forall a: array int, i: int, s: bag int. 0 <= i < length a ->
not (mem a[i] s) -> inter (drop a i) s == inter (drop a (i+1)) s

lemma not_mem_inter_l:
forall a: array int, i: int, s: bag int. 0 <= i < length a ->
not (mem a[i] s) -> inter s (drop a i) == inter s (drop a (i+1))

let rec lemma bagofincreasing (a: array int) (i x: int)
requires { increasing a }
requires { 0 <= i < length a }
requires { x < a[i] }
ensures  { not (mem x (drop a i)) }
variant  { length a - i }
= if i < length a - 1 then bagofincreasing a (i+1) x

let coincidence_count (a b: array int) : int
requires { increasing a }
requires { increasing b }
ensures  { result = card (inter (bagof a) (bagof b)) }
=
let ref i = 0 in
let ref j = 0 in
let ref c = 0 in
while i < length a && j < length b do
invariant { 0 <= i <= length a }
invariant { 0 <= j <= length b }
invariant { c + card (inter (drop a i) (drop b j))
= card (inter (bagof a) (bagof b)) }
variant   { length a - i + length b - j }
if a[i] < b[j] then
incr i
else if a[i] > b[j] then
incr j
else begin
assert { inter (drop a i) (drop b j) ==
add a[i] (inter (drop a (i+1)) (drop b (j+1))) };
incr i;
incr j;
incr c
end
done;
c

end
```