Accurate discriminant
Kahan algorithm for an accurate discriminant.
Authors: Sylvie Boldo
Topics: Floating-Point Computations / Arithmetic
References: NSV-3 Benchmarks
see also the index (by topic, by tool, by reference, by year)
This function computes an accurate discriminant using Kahan's algorithm. The result is proved correct within 2 ulps. Overflow and Underflow restrictions are given. Note also the axiomatic to ensure the definition of ulp is the proper one.
/*@ axiomatic FP_ulp { @ logic real ulp(double f); @ @ axiom ulp_normal1 : @ \forall double f; 0x1p-1022 <= \abs(f) @ ==>\abs(f) < 0x1.p53 * ulp(f) ; @ @ axiom ulp_normal2 : @ \forall double f; 0x1p-1022 <= \abs(f) @ ==> ulp(f) <= 0x1.p-52 * \abs(f); @ axiom ulp_subnormal : @ \forall double f; \abs(f) < 0x1p-1022 @ ==> ulp(f) == 0x1.p-1074; @ axiom ulp_pow : @ \forall double f; \exists integer i; @ ulp(f) == \pow(2.,i); @ } */ /*@ ensures \result==\abs(f); */ double fabs(double f); /*@ requires xy == \round_double(\NearestEven,x*y) && @ \abs(x) <= 0x1.p995 && @ \abs(y) <= 0x1.p995 && @ \abs(x*y) <= 0x1.p1021; @ ensures ((x*y == 0 || 0x1.p-969 <= \abs(x*y)) @ ==> x*y == xy+\result); @*/ double Dekker(double x, double y, double xy); /* If no Underflow occur, the result is within 2 ulps of the correct result */ /*@ requires @ (b==0. || 0x1.p-916 <= \abs(b*b)) && @ (a*c==0. || 0x1.p-916 <= \abs(a*c)) && @ \abs(b) <= 0x1.p510 && \abs(a) <= 0x1.p995 && \abs(c) <= 0x1.p995 && @ \abs(a*c) <= 0x1.p1021; @ ensures \result==0. || \abs(\result-(b*b-a*c)) <= 2.*ulp(\result); @ */ double discriminant(double a, double b, double c) { double p,q,d,dp,dq; p=b*b; q=a*c; if (p+q <= 3*fabs(p-q)) d=p-q; else { dp=Dekker(b,b,p); dq=Dekker(a,c,q); d=(p-q)+(dp-dq); } return d; }