Wiki Agenda Contact English version

Fenwick

Finding interval sums using Fenwick trees


Auteurs: Martin Clochard

Catégories: Data Structures / Trees / Array Data Structure

Outils: Why3

see also the index (by topic, by tool, by reference, by year)


(* Fenwick trees (or binary indexed tree) for prefix/interval sums.
   Represent an integer array over interval [0;n[ such that the following
   operations are both efficient:
   . incrementation of individual cell (O(log(n)))
   . Query sum of elements over interval [a;b[ (O(log(b-a)))

   Author: Martin Clochard (Université Paris Sud) *)

(* Array-based implementation with i->(2i+1,2i+2) node encoding:
   . Integer represent nodes
   . 0 is the root
   . childs of node n are 2n+1 and 2n+2
   . Leaves represent the model array cells. For n > 0 elements in the model,
     they are represented by the cells over the range [n-1;2n-1[
   The structure manage queries by keeping for each node the sum of the
   values of all descendant leaves, which we call here 'node summary' *)
module Fenwick

  use int.Int
  use int.ComputerDivision
  use ref.Ref
  use int.Sum
  use array.Array

  (* Encode fenwick trees within an array. The leaves field represent
     the actual number of element within the model. *)
  type fenwick = {
    t : array int;
    ghost leaves : int;
  }

  (* Invariant *)
  predicate valid (f:fenwick) =
    f.leaves >= 0 /\
    f.t.length = (if f.leaves = 0 then 0 else 2 * f.leaves - 1) /\
    forall i. 0 <= i /\ i < f.leaves - 1 ->
      f.t[i] = f.t[2*i+1] + f.t[2*i+2]

  (* Get the i-th elements of the model. *)
  function get (f:fenwick) (i:int) : int = f.t[i+f.leaves-1]
  (* Get the sum of elements over range [a;b[ *)
  function rget (f:fenwick) (a b:int) : int = sum (get f) a b

  (* Create a Fenwick tree initialized at 0 *)
  let make (lv:int) : fenwick
    requires { lv >= 0 }
    ensures { valid result }
    ensures { forall i. 0 <= i < lv -> get result i = 0 }
    ensures { result.leaves = lv }
  = { t = if lv = 0 then make 0 0 else make (2*lv-1) 0;
      leaves = lv }

  (* Add x to the l-th cell *)
  let add (f:fenwick) (l:int) (x:int) : unit
    requires { 0 <= l < f.leaves /\ valid f }
    ensures { valid f }
    ensures { forall i. 0 <= i < f.leaves /\ i <> l ->
      get f i = get (old f) i }
    ensures { get f l = get (old f) l + x }
  = let lc = ref (div f.t.length 2 + l) in
    f.t[!lc] <- f.t[!lc] + x;
    (* Update node summaries for all elements on the path
       from the updated leaf to the root. *)
    label I in
    while !lc <> 0 do
      invariant { 0 <= !lc < f.t.length }
      invariant { forall i. 0 <= i /\ i < f.leaves - 1 ->
        f.t[i] = f.t[2*i+1] + f.t[2*i+2] -
          if 2*i+1 <= !lc <= 2*i+2 then x else 0 }
      invariant { forall i. f.leaves - 1 <= i < f.t.length ->
        f.t[i] = (f at I).t[i] }
      variant { !lc }
      lc := div (!lc - 1) 2;
      f.t[!lc] <- f.t[!lc] + x
    done

  (* Lemma to shift dum indices. *)
  let rec ghost sum_dec (a b c:int) : unit
    requires { a <= b }
    ensures { forall f g. (forall i. a <= i < b -> f i = g (i+c)) ->
      sum f a b = sum g (a+c) (b+c) }
    variant { b - a }
  = if a < b then sum_dec (a+1) b c

  (* Crucial lemma for the query routine: Summing the node summaries
     over range [2a+1;2b+1[ is equivalent to summing node summaries
     over range [a;b[. This is because the elements of range [2a+1;2b+1[
     are exactly the childs of elements of range [a;b[. *)
  let rec ghost fen_compact (f:fenwick) (a b:int) : unit
    requires { 0 <= a <= b /\ 2 * b < f.t.length /\ valid f }
    ensures { sum (([]) f.t) a b  = sum (([]) f.t) (2*a+1) (2*b+1) }
    variant { b - a }
  = if a < b then fen_compact f (a+1) b

  (* Query sum of elements over interval [a,b[. *)
  let query (f:fenwick) (a b:int) : int
    requires { 0 <= a <= b <= f.leaves /\ valid f }
    ensures { result = rget f a b }
  = let lv = div f.t.length 2 in
    let ra = ref (a + lv) in let rb = ref (b + lv) in
    let acc = ref 0 in
    ghost sum_dec a b lv;
    (* If ra = rb, the sum is 0.
       Otherwise, adjust the range to odd boundaries in constant time
       and use compaction lemma to halve interval size. *)
    while !ra <> !rb do
      invariant { 0 <= !ra <= !rb <= f.t.length }
      invariant { !acc + sum (([]) f.t) !ra !rb = rget f a b }
      variant { !rb - !ra }
      if mod !ra 2 = 0 then acc := !acc + f.t[!ra];
      ra := div !ra 2;
      rb := !rb - 1;
      if mod !rb 2 <> 0 then acc := !acc + f.t[!rb];
      rb := div !rb 2;
      ghost fen_compact f !ra !rb
    done;
    !acc

end

download ZIP archive

Why3 Proof Results for Project "fenwick"

Theory "fenwick.Fenwick": fully verified

ObligationsAlt-Ergo 2.2.0CVC4 1.6
VC for make---0.06
VC for add------
split_vc
precondition---0.02
index in array bounds---0.06
index in array bounds---0.05
loop invariant init---0.06
loop invariant init0.38---
loop invariant init---0.02
precondition---0.02
index in array bounds---0.05
index in array bounds---0.05
loop variant decrease---0.05
loop invariant preservation---0.05
loop invariant preservation1.60---
loop invariant preservation0.11---
postcondition---0.05
postcondition0.14---
postcondition0.06---
VC for sum_dec0.31---
VC for fen_compact---0.13
VC for query------
split_vc
precondition---0.02
precondition---0.04
loop invariant init---0.05
loop invariant init------
inline_goal
loop invariant init0.38---
precondition---0.03
index in array bounds---0.03
precondition---0.03
precondition---0.03
index in array bounds---0.05
precondition---0.03
precondition---0.07
loop variant decrease---0.08
loop invariant preservation---0.09
loop invariant preservation0.04---
precondition---0.03
precondition---0.09
loop variant decrease---0.05
loop invariant preservation---0.06
loop invariant preservation0.03---
precondition---0.03
precondition---0.04
index in array bounds---0.04
precondition---0.03
precondition---0.07
loop variant decrease---0.06
loop invariant preservation---0.09
loop invariant preservation0.04---
precondition---0.03
precondition---0.07
loop variant decrease---0.08
loop invariant preservation---0.06
loop invariant preservation0.04---
postcondition---0.04