Greatest common divisor, using the Euclidean algorithm
Auteurs: Jean-Christophe Filliâtre / Claude Marché
Catégories: Arithmetic / Divisibility
Outils: Why3
see also the index (by topic, by tool, by reference, by year)
(* Greatest common divisor, using the Euclidean algorithm *) module EuclideanAlgorithm use mach.int.Int use number.Gcd let rec euclid (u v: int) : int variant { v } requires { u >= 0 /\ v >= 0 } ensures { result = gcd u v } = if v = 0 then u else euclid v (u % v) end module EuclideanAlgorithmIterative use mach.int.Int use ref.Ref use number.Gcd let euclid (u0 v0: int) : int requires { u0 >= 0 /\ v0 >= 0 } ensures { result = gcd u0 v0 } = let ref u = u0 in let ref v = v0 in while v <> 0 do invariant { u >= 0 /\ v >= 0 } invariant { gcd u v = gcd u0 v0 } variant { v } let tmp = v in v <- u % v; u <- tmp done; u end module BinaryGcd use mach.int.Int use number.Parity use number.Gcd lemma even1: forall n: int. 0 <= n -> even n <-> n = 2 * div n 2 lemma odd1: forall n: int. 0 <= n -> not (even n) <-> n = 2 * div n 2 + 1 lemma div_nonneg: forall n: int. 0 <= n -> 0 <= div n 2 use number.Coprime lemma gcd_even_even: forall u v: int. 0 <= v -> 0 <= u -> gcd (2 * u) (2 * v) = 2 * gcd u v lemma gcd_even_odd: forall u v: int. 0 <= v -> 0 <= u -> gcd (2 * u) (2 * v + 1) = gcd u (2 * v + 1) lemma gcd_even_odd2: forall u v: int. 0 <= v -> 0 <= u -> even u -> odd v -> gcd u v = gcd (div u 2) v lemma odd_odd_div2: forall u v: int. 0 <= v -> 0 <= u -> div ((2*u+1) - (2*v+1)) 2 = u - v let lemma gcd_odd_odd (u v: int) requires { 0 <= v <= u } ensures { gcd (2 * u + 1) (2 * v + 1) = gcd (u - v) (2 * v + 1) } = assert { gcd (2 * u + 1) (2 * v + 1) = gcd ((2*u+1) - 1*(2*v+1)) (2 * v + 1) } lemma gcd_odd_odd2: forall u v: int. 0 <= v <= u -> odd u -> odd v -> gcd u v = gcd (div (u - v) 2) v let rec binary_gcd (u v: int) : int variant { v, u } requires { u >= 0 /\ v >= 0 } ensures { result = gcd u v } = if v > u then binary_gcd v u else if v = 0 then u else if mod u 2 = 0 then if mod v 2 = 0 then 2 * binary_gcd (u / 2) (v / 2) else binary_gcd (u / 2) v else if mod v 2 = 0 then binary_gcd u (v / 2) else binary_gcd ((u - v) / 2) v end
With machine integers. Note that we assume parameters u, v to be nonnegative. Otherwise, for u = v = min_int, the gcd could not be represented.
(* does not work with extraction driver ocaml64 module EuclideanAlgorithm31 use mach.int.Int31 use number.Gcd let rec euclid (u v: int31) : int31 variant { to_int v } requires { u >= 0 /\ v >= 0 } ensures { result = gcd u v } = if v = 0 then u else euclid v (u % v) end *) module EuclideanAlgorithm63 use mach.int.Int63 use number.Gcd let rec euclid (u v: int63) : int63 variant { to_int v } requires { u >= 0 /\ v >= 0 } ensures { result = gcd u v } = if v = 0 then u else euclid v (u % v) end
download ZIP archive