Generate all binary trees of size n
Given n, the program return an array a of size n+1 such that a[i] contains the list of all binary trees of size i.
Auteurs: Jean-Christophe Filliâtre
Catégories: Trees
Outils: Why3
see also the index (by topic, by tool, by reference, by year)
(* Generate all binary trees of size n. Given n, the program return an array a of size n+1 such that a[i] contains the list of all binary trees of size i. TODO: tail-recursive version of combine *) module GenerateAllTrees use int.Int use list.List use list.Mem use list.Append use list.Distinct use array.Array use list.Length type tree = Empty | Node tree tree function size (t: tree) : int = match t with | Empty -> 0 | Node l r -> 1 + size l + size r end lemma size_nonneg: forall t: tree. size t >= 0 lemma size_left: forall t: tree. size t > 0 -> exists l r: tree. t = Node l r /\ size l < size t predicate all_trees (n: int) (l: list tree) = distinct l /\ forall t: tree. size t = n <-> mem t l lemma all_trees_0: all_trees 0 (Cons Empty Nil) lemma tree_diff: forall l1 l2: tree. size l1 <> size l2 -> forall r1 r2: tree. Node l1 r1 <> Node l2 r2 (* combines two lists of trees l1 and l2 into the list of trees with a left sub-tree from l1 and a right sub-tree from l2 *) let combine (i1: int) (l1: list tree) (i2: int) (l2: list tree) requires { 0 <= i1 /\ all_trees i1 l1 /\ 0 <= i2 /\ all_trees i2 l2 } ensures { distinct result } ensures { forall t:tree. mem t result <-> (exists l r: tree. t = Node l r /\ size l = i1 /\ size r = i2) } = let rec loop1 (l1: list tree) : list tree variant { l1 } requires { distinct l1 } ensures { distinct result } ensures { forall t:tree. mem t result <-> (exists l r: tree. t = Node l r /\ mem l l1 /\ mem r l2) } = match l1 with | Nil -> Nil | Cons t1 l1 -> let rec loop2 (l2: list tree) : list tree variant { l2 } requires { distinct l2 } ensures { distinct result } ensures { forall t:tree. mem t result <-> (exists r: tree. t = Node t1 r /\ mem r l2) } = match l2 with | Nil -> Nil | Cons t2 l2 -> Cons (Node t1 t2) (loop2 l2) end in loop2 l2 ++ loop1 l1 end in loop1 l1 let all_trees (n: int) requires { n >= 0 } ensures { forall i: int. 0 <= i <= n -> all_trees i result[i] } = let a = make (n+1) Nil in a[0] <- Cons Empty Nil; for i = 1 to n do invariant { forall k: int. 0 <= k < i -> all_trees k a[k] } a[i] <- Nil; for j = 0 to i-1 do invariant { forall k: int. 0 <= k < i -> all_trees k a[k] } invariant { distinct a[i] } invariant { forall t: tree. mem t a[i] <-> (exists l r: tree. t = Node l r /\ size t = i /\ size l < j) } a[i] <- (combine j a[j] (i-1-j) a[i-1-j]) ++ a[i] done done; a end
download ZIP archive