Wiki Agenda Contact Version française

Kleene Algebra

Kleene Algebra Definition and Relational Kleene Algebra


Authors: Quentin Garchery

Topics: Mathematics

Tools: Why3

see also the index (by topic, by tool, by reference, by year)


Kleene Algebra Definition and Relational Kleene Algebra

Author: Quentin Garchery (Université Paris-Saclay)

module SemiRing

  use int.Int

  type t
  constant zero : t
  constant one : t
  function (+) t t : t
  function (*) t t : t

  clone export algebra.CommutativeMonoid with type t = t, constant unit = zero,
  function op = (+), axiom .

  clone algebra.Monoid with type t = t, constant unit = one,
  function op = (*), axiom .

  axiom Mul_zero_l : forall x. zero * x = zero
  axiom Mul_zero_r : forall x. x * zero = zero

  axiom Mul_distr_l : forall x y z : t. x * (y + z) = x * y + x * z
  axiom Mul_distr_r : forall x y z : t. (y + z) * x = y * x + z * x

  let rec ghost function (^) (x : t) (n : int) : t
    requires { n >= 0 }
    variant { n }
  =
    if n = 0 then pure{one} else let r = x ^ (n-1) in pure {x * r}

  clone int.Exponentiation with type t = t, constant one = one,
  function (*) = (*), function power = (^), lemma .
end

module Dioid

  clone export SemiRing with axiom .

  axiom Idem : forall x : t. x + x = x

  predicate (<=) (x : t) (y : t) = x + y = y

  lemma le_refl : forall x. x <= x

  lemma le_antisym : forall x y. x <= y -> y <= x -> x = y

  lemma le_trans : forall x y z. x <= y -> y <= z -> x <= z

  lemma zero_le : forall x. zero <= x

  lemma le_compat_add : forall x y z. x <= y -> x + z <= y + z

  lemma le_add : forall x y. x <= x + y

  lemma le_add_le : forall x y z. x <= z -> y <= z -> x + y <= z

  lemma add_le : forall x y z. x + y <= z -> x <= z

  lemma le_compat_add_left : forall x y z. x <= y -> z * x <= z * y

  lemma le_compat_add_right : forall x y z. x <= y -> x * z <= y * z
end

module KleeneAlgebra

  use int.Int

  clone export Dioid with axiom .

  (* We denote x^* as !x *)
  function (!_) t : t

  axiom Star_unfold_left : forall x. one + x * !x <= !x

  axiom Star_unfold_right : forall x. one + !x * x <= !x

  axiom Star_induct_left : forall x y z. z + x * y <= y -> !x * z <= y

  axiom Star_induct_right : forall x y z. z + y * x <= y -> z * !x <= y

  lemma one_le_star : forall x. one <= !x

  lemma mul_var_le_star : forall x. x * !x <= !x

  lemma var_mul_le_star : forall x. !x * x <= !x

  lemma power_le_star : forall i x. i >= 0 -> x ^ i <= !x

  lemma star_mul_star : forall x. !x * !x = !x
  by !x + x * !x <= ! x

  lemma star_star : forall x. !(!x) = !x

  lemma star_unfold_left : forall x. one + x * !x = !x
  by one + x * (one + x * !x) <= one + x * !x

  lemma star_unfold_right : forall x. one + !x * x = !x
  by one + (one + !x * x) * x <= one + !x * x

  lemma star_le : forall x y. x <= y -> !x <= !y
  by one + x * !y <= !y

  lemma le_star_left_right : forall x y z. z * x <= y * z -> z * !x <= !y * z
  by z + (!y * z) * x <= !y * z

  lemma le_star_right_left : forall x y z. x * z <= z * y -> !x * z <= z * !y
  by z + x * (z * !y) <= z * !y

  lemma slide_left : forall x y. !(x + y) = !x * !(y * !x)
  by !x <= !(x + y)
  so y * !x <= !(x + y)
  so !(y * !x) <= !(!(x + y)) <= !(x + y)
  so !x * !(y * !x) <= !(x + y)
  so one + (x + y) * (!x * !(y * !x)) <= !x * !(y * !x)
  so !(x + y) <= !x * !(y * !x)

  lemma slide_right : forall x y. !(x + y) = !(!x * y) * !x
  by !x <= !(x + y)
  so !x * y <= !(x + y)
  so !(!x * y) <= !(!(x + y)) <= !(x + y)
  so !(!x * y) * !x <= !(x + y)
  so one + (!(!x * y) * !x) * (x + y) <= !(!x * y) * !x
  so !(x + y) <= !(!x * y) * !x

Conway's equality: a way to cut x^* in slices of size x^n

  let rec ghost function sum_pow (x : t) (a b: int) : t
    requires { b >= a >= 0 }
    variant { b - a }
  = if b = a then pure{zero} else
    let m1 = sum_pow x a (b - 1) in
    let m2 = x ^ (b - 1) in
    pure {m1 + m2}

  lemma sum_pow_left: forall x a b.
    b > a >= 0 ->
    sum_pow x a b = x^a + sum_pow x (Int.(+) a 1) b

  lemma mul_sum_pow: forall x a b.
    b >= a >= 0 ->
    sum_pow x a b * x = sum_pow x (Int.(+) a 1) (Int.(+) b 1)

  lemma sum_pow_le_star: forall x a b.
    b >= a >= 0 ->
    sum_pow x a b <= !x

  lemma Conway_equality: forall x n.
    n >= 1 ->
    !x = !(x^n) * sum_pow x 0 n
  by !(x^n) * sum_pow x 0 n <= !x
  so !(x^n) * sum_pow x 0 n * x = !(x^n) * sum_pow x 1 n + !(x^n) * x ^ n
                                <= !(x^n) * sum_pow x 0 n
  so one + !(x^n) * sum_pow x 0 n * x <= !(x^n) * sum_pow x 0 n
end

module RelAlgebra

  use int.Int

  use set.Set

  (* Relational Algebra: sets of pairs of the same type *)

  type a

  type t = set (a, a)

Specify zero, one, +, * and ! in terms of membership

  constant zero : t = empty
  lemma zero_def : forall x. not mem x zero

  constant one : t = map (fun a -> (a, a)) all
  lemma one_def : forall x : a. mem (x, x) one

  let ghost function post (s : t) (x : a)
    ensures { forall y. mem y result <-> mem (x, y) s }
  =
    map (fun p -> let (_, a2) = p in a2)
    (filter s (fun p -> let (a1, _) = p in pure{a1 = x}))

  let ghost function pre (s : t) (y : a)
    ensures { forall x. mem x result <-> mem (x, y) s }
  =
    map (fun p -> let (a1, _) = p in a1)
    (filter s (fun p -> let (_, a2) = p in pure {a2 = y}))

  let ghost function (+) (s1 s2 : t)
    ensures { forall x. mem x result <-> mem x s1 \/ mem x s2 }
  =
    union s1 s2

  let ghost function (*) (s1 s2 : t)
    ensures { forall a1 a2. mem (a1, a2) result <->
                            exists x. mem (a1, x) s1 /\ mem (x, a2) s2 }
  =
    filter all
    (fun p -> let (a1, a2) = p in
    not (disjoint (post s1 a1) (pre s2 a2)))

  lemma unit_l : forall x. one * x = x
  by one * x == x

  lemma unit_r : forall x. x * one = x
  by x * one == x

  lemma assoc_mul : forall x y z. x * y * z = x * (y * z)
  by forall e. (mem e (x * y * z) -> mem e (x * (y * z))) /\
               (mem e (x * (y * z)) -> mem e (x * y * z))

  clone Dioid with type t = t, constant zero = zero,
  constant one = one, function (+) = (+), function (*) = (*), lemma .

  lemma le_mem : forall x y. x <= y <-> forall u. mem u x -> mem u y

  inductive in_star t (a, a) =
   | Star_0 : forall x s. in_star s (x, x)
   | Star_s : forall x y z s. in_star s (x, y) -> mem (y, z) s -> in_star s (x, z)

  let ghost function (!_) (s : t) =
      filter all (in_star s)

  lemma power_in_star : forall s : t, i, p : (a, a).
        i >= 0 -> mem p (s ^ i) -> mem p !s
        by i > 0 -> let (x, z) = p in
           exists y. (in_star s (x, y) by mem (x, y) (s ^ (i-1)))  /\ mem (y, z) s

  lemma star_in_power : forall s x y.
        in_star s (x, y) -> (exists i. i >= 0 /\ mem (x, y) (s ^ i))

  lemma star_spec : forall s : t, p : (a, a).
        mem p !s <-> exists i. i >= 0 /\ mem p (s ^ i)

  lemma star_unfold_l : forall x u. mem u (one + x * !x) -> mem u !x
  by mem u (x * !x) -> (exists i. i >= 0 /\ mem u (x * x ^ i))
     by let (u1, u2) = u in
        exists v. mem (u1, v) x /\ mem (v, u2) !x
                  so exists i. i >= 0 /\ mem u (x * x ^ i)

  lemma star_unfold_r : forall x u. mem u (one + !x * x) -> mem u !x
  by mem u (!x * x) -> (exists i. i >= 0 /\ mem u (x ^ i * x))
     by let (u1, u2) = u in
     exists v. mem (u1, v) !x /\ mem (v, u2) x
            so exists i. i >= 0 /\ mem u (x ^ i * x)

  lemma star_induct_left_ind : forall x y z i. i >= 0 ->
    z + x * y <= y -> x^i * z <= y

  lemma star_induct_left_lem : forall x y z i. i >= 0 ->
    z + x * y <= y -> forall u. mem u (x^i * z) -> mem u y

  lemma star_induct_left : forall x y z.
    z + x * y <= y -> !x * z <= y
  by forall u. mem u (!x * z) -> (exists i. i >= 0 /\ mem u (x^i * z))
     by let (u1, u2) = u in
        exists v. mem (u1, v) !x /\ mem (v, u2) z
                  so exists i. i >= 0 /\ mem u (x^i * z)

  lemma star_induct_right_ind : forall x y z i. i >= 0 ->
    z + y * x <= y -> z * x^i <= y

  lemma star_induct_right_lem : forall x y z i. i >= 0 ->
    z + y * x <= y -> forall u. mem u (z * x^i) -> mem u y

  lemma star_induct_right : forall x y z.
    z + y * x <= y -> z * !x <= y
  by forall u. mem u (z * !x) -> (exists i. i >= 0 /\ mem u (z * x^i))
     by let (u1, u2) = u in
        exists v. mem (u1, v) z /\ mem (v, u2) !x
                  so exists i. i >= 0 /\ mem u (z * x^i)

Prove that this forms a Kleene Algebra

  clone KleeneAlgebra with type t = t, constant zero = zero,
  constant one = one, function (+) = (+), function (*) = (*),
  function (!_) = (!_), lemma .
end

download ZIP archive

Why3 Proof Results for Project "kleene_algebra"

Theory "kleene_algebra.SemiRing": fully verified

ObligationsCVC4 1.8
VC for infix ^0.01
Exponentiation.Assoc0.02
Exponentiation.Unit_def_l0.01
Exponentiation.Unit_def_r0.02
Exponentiation.Power_00.02
Exponentiation.Power_s0.02

Theory "kleene_algebra.Dioid": fully verified

ObligationsCVC4 1.8
le_refl0.01
le_antisym0.01
le_trans0.01
zero_le0.02
le_compat_add0.02
le_add0.03
le_add_le0.01
add_le0.02
le_compat_add_left0.02
le_compat_add_right0.03

Theory "kleene_algebra.KleeneAlgebra": fully verified

ObligationsCVC4 1.8
one_le_star0.03
mul_var_le_star0.05
var_mul_le_star0.04
power_le_star---
introduce_premises
power_le_star.0---
induction i
base case0.01
recursive case0.04
star_mul_star---
split_vc
star_mul_star.00.04
star_mul_star.10.03
star_star0.09
star_unfold_left---
split_vc
star_unfold_left.00.03
star_unfold_left.10.02
star_unfold_right---
split_vc
star_unfold_right.00.04
star_unfold_right.10.03
star_le---
split_vc
star_le.00.05
star_le.10.03
le_star_left_right---
split_vc
le_star_left_right.00.27
le_star_left_right.10.01
le_star_right_left---
split_vc
le_star_right_left.00.33
le_star_right_left.10.02
slide_left---
split_vc
slide_left.00.02
slide_left.10.15
slide_left.20.03
slide_left.30.06
slide_left.40.08
slide_left.50.61
slide_left.60.04
slide_left.70.02
slide_right---
split_vc
slide_right.00.02
slide_right.10.27
slide_right.20.02
slide_right.30.02
slide_right.40.07
slide_right.50.86
slide_right.60.04
slide_right.70.02
VC for sum_pow0.02
sum_pow_left---
introduce_premises
sum_pow_left.0---
induction b from a
base case0.01
recursive case0.03
mul_sum_pow---
introduce_premises
mul_sum_pow.0---
induction b from a
base case0.03
recursive case0.03
sum_pow_le_star---
introduce_premises
sum_pow_le_star.0---
induction b from a
base case0.02
recursive case0.04
Conway_equality---
split_vc
Conway_equality.00.05
Conway_equality.10.09
Conway_equality.21.22
Conway_equality.31.42
Conway_equality.40.04

Theory "kleene_algebra.RelAlgebra": fully verified

ObligationsAlt-Ergo 2.4.0Alt-Ergo 2.4.2CVC4 1.8Z3 4.11.2Z3 4.12.2
zero_def------0.05------
one_def------0.08------
VC for post------0.16------
VC for pre------0.14------
VC for infix +------0.05------
VC for infix *---------------
split_vc
postcondition0.53------------
unit_l---------------
split_vc
unit_l.01.60------------
unit_l.1------0.05------
unit_r---------------
split_vc
unit_r.01.58------------
unit_r.1------0.04------
assoc_mul---------------
split_vc
assoc_mul.00.24------------
assoc_mul.10.24------------
assoc_mul.2---------0.01---
Dioid.Assoc------0.04------
Dioid.Unit_def_l------0.04------
Dioid.Unit_def_r------0.05------
Dioid.Comm------0.06------
Dioid.Monoid.Assoc------0.05------
Dioid.Monoid.Unit_def_l---0.01---------
Dioid.Monoid.Unit_def_r---0.01---------
Dioid.Mul_zero_l0.02------------
Dioid.Mul_zero_r0.03------------
Dioid.Mul_distr_l0.88------------
Dioid.Mul_distr_r0.88------------
Dioid.Idem------0.09------
le_mem------0.07------
power_in_star---------------
introduce_premises
power_in_star.0---------------
induction i
base case1.20------------
recursive case---------------
split_all_full
power_in_star.0.1.0---------0.04---
power_in_star.0.1.1---------1.03---
power_in_star.0.1.2---------0.01---
power_in_star.0.1.30.97------------
star_in_power---------------
introduce_premises
star_in_power.0---------------
induction_arg_pr H with_gen x,y
star_in_power.0.0---------------
split_vc
star_in_power.0.0.0---------------
exists 0
star_in_power.0.0.0.0---------0.02---
star_in_power.0.1------0.29------
star_spec0.10------------
star_unfold_l---------------
split_vc
star_unfold_l.0------0.07------
star_unfold_l.1---------0.02---
star_unfold_l.2------------0.03
star_unfold_l.30.32------------
star_unfold_r---------------
split_vc
star_unfold_r.0------0.10------
star_unfold_r.1---------0.02---
star_unfold_r.2------------0.03
star_unfold_r.3------0.11------
star_induct_left_ind---------------
split_vc
star_induct_left_ind.0---------------
induction i
base case---------0.02---
recursive case------0.42------
star_induct_left_lem---------------
rewrite <- le_mem
star_induct_left_lem.0------0.05------
star_induct_left---------------
split_vc
star_induct_left.0------0.09------
star_induct_left.1---------0.02---
star_induct_left.2------------0.04
star_induct_left.3------0.32------
star_induct_right_ind---------------
split_vc
star_induct_right_ind.0---------------
induction i
base case---------0.02---
recursive case---------0.53---
star_induct_right_lem---------------
rewrite <- le_mem
star_induct_right_lem.0------0.05------
star_induct_right---------------
split_vc
star_induct_right.0------0.09------
star_induct_right.1---------0.03---
star_induct_right.2------------0.04
star_induct_right.3------0.17------
KleeneAlgebra.Assoc------0.06------
KleeneAlgebra.Unit_def_l------0.06------
KleeneAlgebra.Unit_def_r------0.12------
KleeneAlgebra.Comm------0.07------
KleeneAlgebra.Monoid.Assoc------0.08------
KleeneAlgebra.Monoid.Unit_def_l---0.02---------
KleeneAlgebra.Monoid.Unit_def_r---0.01---------
KleeneAlgebra.Mul_zero_l0.02------------
KleeneAlgebra.Mul_zero_r0.02------------
KleeneAlgebra.Mul_distr_l0.02------------
KleeneAlgebra.Mul_distr_r0.02------------
KleeneAlgebra.Idem------0.08------
KleeneAlgebra.Star_unfold_left------0.09------
KleeneAlgebra.Star_unfold_right------0.06------
KleeneAlgebra.Star_induct_left------0.12------
KleeneAlgebra.Star_induct_right------0.08------