Wiki Agenda Contact Version française

Schorr-Waite algorithm

Schorr-Waite's graph marking algorithm


Authors: Mário Pereira

Topics: Ghost code / Graph Algorithms / Pointer Programs

Tools: Why3

see also the index (by topic, by tool, by reference, by year)


Schorr-Waite algorithm

The Schorr-Waite algorithm is the first mountain that any formalism for pointer aliasing should climb. -- Richard Bornat, 2000

Author: Mário Pereira (UBI, then Université Paris Sud)

The code, specification, and invariants below follow those of the following two proofs:

- Thierry Hubert and Claude Marché, using Caduceus and Coq

A case study of C source code verification: the Schorr-Waite algorithm. SEFM 2005. http://www.lri.fr/~marche/hubert05sefm.ps

- Rustan Leino, using Dafny

Dafny: An Automatic Program Verifier for Functional Correctness. LPAR-16. http://research.microsoft.com/en-us/um/people/leino/papers/krml203.pdf

module SchorrWaite

  use seq.Seq
  use map.Map
  use ref.Ref
  use int.Int
  use list.List
  use list.Length
  use list.Append
  use set.Fset as S

Why3 has no support for arbitrary pointers, so we introduce a small component-as-array memory model

  type loc
  val constant null: loc

the type of pointers and the null pointer

  val (=) (a b: loc) : bool
    ensures { result = (a = b) }

  val m: ref (map loc bool)
  val c: ref (map loc bool)
  val left: ref (map loc loc)
  val right: ref (map loc loc)

each (non-null) location holds four fields: two Boolean marks m and c and two pointers left and right

  val get_left (p: loc) : loc
    requires { p <> null }
    ensures  { result = !left[p] }

  val set_left (p: loc) (v: loc) : unit
    requires { p <> null }
    writes   { left }
    ensures  { !left = set (old !left) p v }

  val get_right (p: loc) : loc
    requires { p <> null }
    ensures  { result = !right[p] }

  val set_right (p: loc) (v: loc) : unit
    requires { p <> null }
    writes   { right }
    ensures  { !right = set (old !right) p v }

  val get_m (p: loc) : bool
    requires { p <> null }
    ensures  { result = !m[p] }

  val set_m (p: loc) (v: bool) : unit
    requires { p <> null }
    writes   { m }
    ensures  { !m = set (old !m) p v }

  val get_c (p: loc) : bool
    requires { p <> null }
    ensures  { result = !c[p] }

  val set_c (p: loc) (v: bool) : unit
    requires { p <> null }
    writes   { c }
    ensures  { !c = set (old !c) p v }

  val ghost path_from_root : ref (map loc (list loc))

for the purpose of the proof, we add a fifth, ghost, field, which records the path from the root (when relevant)

  val ghost get_path_from_root (p : loc) : list loc
    ensures  { result = !path_from_root[p] }

  val ghost set_path_from_root (p: loc) (l : list loc) : unit
    requires { p <> null }
    writes   { path_from_root }
    ensures  { !path_from_root = set (old !path_from_root) p l }

Stack of nodes, from the root to the current location, in reverse order (i.e. the current location is the first element in the stack)

  type stacknodes = Seq.seq loc

  predicate not_in_stack (n: loc) (s: stacknodes) =
    forall i: int. 0 <= i < Seq.length s -> n <> Seq.get s i

  let ghost tl_stackNodes (stack: stacknodes) : stacknodes
    requires { Seq.length stack > 0 }
    ensures  { result = stack[1..] }
    ensures  { forall n. not_in_stack n stack -> not_in_stack n result }
  = stack[1..]

two lemmas about stacks

  let lemma cons_not_in (s: stacknodes) (n t: loc)
    requires { not_in_stack n (cons t s) }
    ensures  { not_in_stack n s }
  =
    assert { forall i: int. 0 <= i < Seq.length s ->
             Seq.get s i = Seq.get (cons t s) (i+1) }

  let lemma tl_cons (s1 s2: stacknodes) (p: loc)
    requires { Seq.length s2 > 0 }
    requires { s1 = s2[1..] }
    requires { p = Seq.get s2 0 }
    ensures  { s2 = cons p s1 }
  = assert { Seq.(==) s2 (cons p s1) }

  function last (s: stacknodes) : loc =
    Seq.get s (Seq.length s - 1)

  predicate distinct (s: stacknodes) =
    forall i j. 0 <= i < Seq.length s -> 0 <= j < Seq.length s -> i <> j ->
    Seq.get s i <> Seq.get s j

Paths

  predicate edge (x y : loc) (left right : map loc loc) =
    x <> null /\ (left[x] = y \/ right[x] = y)

  inductive path (left right : map loc loc) (x y : loc) (p : list loc) =
  | path_nil   : forall x : loc, l r : map loc loc. path l r x x Nil
  | path_cons  : forall x y z : loc,
                 l r : (map loc loc),
                 p : list loc.
                 edge x z l r -> path l r z y p ->
                 path l r x y (Cons x p)

  let rec lemma trans_path (x y z : loc) (l r : map loc loc) (p1 p2 : list loc)
    variant  { length p1 }
    requires { path l r x y p1 }
    requires { path l r y z p2 }
    ensures  { path l r x z (p1 ++ p2) }
  = match p1 with
    | Cons _ (Cons b _ as p') -> trans_path b y z l r p' p2
    | _                       -> ()
    end

  lemma path_edge : forall x y : loc, left right : map loc loc.
    edge x y left right -> path left right x y (Cons x Nil)

  lemma path_edge_cons:
    forall n x y : loc, left right : map loc loc, pth : list loc.
    path left right n x pth -> edge x y left right ->
    path left right n y (pth ++ (Cons x Nil))

  predicate reachable (left right: map loc loc) (x y : loc) =
    exists p : list loc. path left right x y p

Schorr-Waite algorithm

  let schorr_waite (root: loc) (ghost graph : S.fset loc) : unit
    requires { root <> null /\ S.mem root graph }
    (* graph is closed under left and right *)
    requires { forall n : loc. S.mem n graph ->
               n <> null /\
               (!left[n] = null \/ S.mem !left[n] graph) /\
               (!right[n] = null \/ S.mem !right[n] graph) }
    (* graph starts with nothing marked *)
    requires { forall x : loc. S.mem x graph -> not !m[x] }
    (* the structure of the graph is not changed *)
    ensures  { forall n : loc. S.mem n graph ->
               (old !left)[n] = !left[n] /\
               (old !right)[n] = !right[n] }
    (* all the non-null vertices reachable from root
       are marked at the end of the algorithm, and only these *)
    ensures  { forall n : loc. S.mem n graph -> !m[n] ->
               reachable (old !left) (old !right) root n }
    ensures  { !m[root] }
    ensures  { forall n : loc. S.mem n graph -> !m[n] ->
          (forall ch : loc. edge n ch !left !right -> ch <> null -> !m[ch]) }
  = let t = ref root in
    let p = ref null in
    let ghost stackNodes = ref Seq.empty in
    let ghost pth = ref Nil in
    ghost set_path_from_root !t !pth;
    let ghost unmarked_nodes = ref graph in
    let ghost c_false_nodes = ref graph in
    while !p <> null || (!t <> null && not get_m !t) do
      invariant { forall n. S.mem n graph -> not_in_stack n !stackNodes \/
                  exists i : int. Seq.get !stackNodes i = n }
      invariant { not_in_stack null !stackNodes }
      invariant { Seq.length !stackNodes = 0 <-> !p = null }
      invariant { !p <> null -> S.mem !p graph }
      invariant { Seq.length !stackNodes <> 0 -> Seq.get !stackNodes 0 = !p }
      invariant { forall n : loc. S.mem n graph -> not !m[n] ->
                  S.mem n !unmarked_nodes }
      invariant { forall n : loc. S.mem n graph -> not !c[n] ->
                  S.mem n !c_false_nodes }
      invariant { forall i. 0 <= i < Seq.length !stackNodes ->
                  S.mem (Seq.get !stackNodes i) graph }
      invariant { forall i.  0 <= i < Seq.length !stackNodes - 1 ->
                  let p1 = Seq.get !stackNodes i in
                  let p2 = Seq.get !stackNodes (i+1) in
                  (!c[p2] -> old !left[p2] = !left[p2] /\
                             old !right[p2] = p1) /\
                  (not !c[p2] -> old !left[p2] = p1 /\
                                 old !right[p2] = !right[p2]) }
      invariant { !path_from_root[root] = Nil }
      invariant { forall n : loc. S.mem n graph ->
                  not_in_stack n !stackNodes ->
                  !left[n] = old !left[n] /\
                  !right[n] = old !right[n] }
      (* something like Leino's line 74; this is useful to prove that
       * the stack is empty iff p = null *)
      invariant { Seq.length !stackNodes <> 0 ->
                  let first = last !stackNodes in
                  if !c[first] then !right[first] = null
                  else !left[first] = null }
      invariant { Seq.length !stackNodes <> 0 -> last !stackNodes = root }
      (* something like lines 75-76 from Leino's paper *)
      invariant { forall k : int. 0 <= k < Seq.length !stackNodes - 1 ->
               if !c[Seq.get !stackNodes k]
               then !right[Seq.get !stackNodes k] = Seq.get !stackNodes (k+1)
               else !left [Seq.get !stackNodes k] = Seq.get !stackNodes (k+1) }
      (* all nodes in the stack are marked
       * (I4a in Hubert and Marché and something alike line 57 in Leino) *)
      invariant { forall i. 0 <= i < Seq.length !stackNodes ->
                  !m[Seq.get !stackNodes i] }
      (* stack has no duplicates ---> line 55 from Leino's paper *)
      invariant { distinct !stackNodes }
      (* something like Leino's line 68 *)
      invariant { forall i. 0 <= i < Seq.length !stackNodes ->
                  let n = Seq.get !stackNodes i in
                  if !c[n] then !left[n] = old !left[n]
                  else !right[n] = old !right[n] }
      (* lines 80-81 from Leino's paper *)
      invariant { Seq.length !stackNodes <> 0 ->
                  if !c[!p] then old !right[!p] = !t
                  else old !left[!p] = !t }
      (* lines 78-79 from Leino's paper *)
      invariant { forall k : int. 0 < k < Seq.length !stackNodes ->
                  let n = Seq.get !stackNodes k in
                  if !c[n]
                  then Seq.get !stackNodes (k - 1) = old !right[n]
                  else Seq.get !stackNodes (k - 1) = old !left[n] }
      (* line 70 from Leino's paper *)
      invariant { !p <> null ->
                  path (old !left) (old !right) root !p !pth }
      (* line 72 from Leino's paper *)
      invariant { forall n : loc. S.mem n graph -> !m[n] ->
                  reachable (old !left) (old !right) root n }
      invariant { !p = null -> !t = root }
      (* line 70 from Leino's paper *)
      invariant { forall n : loc, pth : list loc.
                  S.mem n graph -> !m[n] ->
                  pth = !path_from_root[n] ->
                  path (old !left) (old !right) root n pth }
      (* lines 61-62 from Leinos' paper *)
      invariant { forall n : loc. S.mem n graph -> n <> null -> !m[n] ->
                  not_in_stack n !stackNodes ->
                  (!left[n] <> null -> !m[!left[n]]) /\
                  (!right[n] <> null -> !m[!right[n]]) }
      (* something like Leino's lines 57-59 *)
      invariant { forall i. 0 <= i < Seq.length !stackNodes ->
                  let n = Seq.get !stackNodes i in
                  !c[n] ->
                  (!left[n] <> null -> !m[!left[n]]) /\
                  (!right[n] <> null -> !m[!right[n]]) }
      (* termination proved using lexicographic order over a triple *)
      variant   { S.cardinal !unmarked_nodes,
                  S.cardinal !c_false_nodes,
                  Seq.length !stackNodes }
      if !t = null || get_m !t then begin
        if get_c !p then begin (* pop *)
          let q = !t in
          t := !p;
          ghost stackNodes := tl_stackNodes !stackNodes;
           p := get_right !p;
           set_right !t q;
          ghost pth := get_path_from_root !p;
        end else begin (* swing *)
          let q = !t in
          t := get_right !p;
          set_right !p (get_left !p);
          set_left !p q;
          ghost c_false_nodes := S.remove !p !c_false_nodes;
          set_c !p true;
        end
      end else begin (* push *)
        let q = !p in
        p := !t;
        ghost stackNodes := Seq.cons !p !stackNodes;
        t := get_left !t;
        set_left !p q;
        set_m !p true;
        ghost if !p <> root then pth := !pth ++ (Cons q Nil) else pth := Nil;
        ghost set_path_from_root !p !pth;
        assert { !p = Seq.get !stackNodes 0 };
        assert { path (old !left) (old !right) root !p !pth };
        set_c !p false;
        ghost c_false_nodes := S.add !p !c_false_nodes;
        ghost unmarked_nodes := S.remove !p !unmarked_nodes
      end
    done

end

download ZIP archive

Why3 Proof Results for Project "schorr_waite"

Theory "schorr_waite.SchorrWaite": fully verified

ObligationsAlt-Ergo 2.0.0CVC4 1.4CVC4 1.5
VC for tl_stackNodes0.01------
VC for cons_not_in---------
split_goal_right
assertion0.01------
postcondition0.01------
VC for tl_cons0.01------
VC for trans_path0.09------
path_edge---0.16---
path_edge_cons0.01------
VC for schorr_waite---------
split_goal_right
precondition0.01------
loop invariant init0.01------
loop invariant init0.01------
loop invariant init0.01------
loop invariant init0.00------
loop invariant init0.01------
loop invariant init0.01------
loop invariant init0.01------
loop invariant init0.01------
loop invariant init0.00------
loop invariant init0.01------
loop invariant init0.01------
loop invariant init0.01------
loop invariant init0.01------
loop invariant init0.01------
loop invariant init0.01------
loop invariant init0.01------
loop invariant init0.01------
loop invariant init0.00------
loop invariant init0.01------
loop invariant init0.00------
loop invariant init0.01------
loop invariant init0.00------
loop invariant init0.01------
loop invariant init0.01------
loop invariant init0.01------
precondition0.01------
precondition0.01------
precondition0.01------
precondition0.02------
precondition0.01------
precondition0.01------
loop variant decrease0.12------
loop invariant preservation0.01------
loop invariant preservation0.03------
loop invariant preservation0.22------
loop invariant preservation0.10------
loop invariant preservation1.10------
loop invariant preservation0.02------
loop invariant preservation0.02------
loop invariant preservation0.92------
loop invariant preservation---0.44---
loop invariant preservation0.02------
loop invariant preservation---0.57---
loop invariant preservation---------
split_goal_right
loop invariant preservation---------
split_goal_right
loop invariant preservation0.532.68---
loop invariant preservation1.33------
loop invariant preservation---------
split_goal_right
loop invariant preservation0.43------
loop invariant preservation1.343.15---
loop invariant preservation1.80------
loop invariant preservation---0.65---
loop invariant preservation0.12------
loop invariant preservation------0.33
loop invariant preservation1.30------
loop invariant preservation0.61------
loop invariant preservation3.79------
loop invariant preservation0.11------
loop invariant preservation0.02------
loop invariant preservation0.06------
loop invariant preservation0.01------
loop invariant preservation---1.05---
loop invariant preservation2.60------
precondition0.01------
precondition0.01------
precondition0.01------
precondition0.01------
precondition0.02------
loop variant decrease0.03------
loop invariant preservation0.02------
loop invariant preservation0.02------
loop invariant preservation0.01------
loop invariant preservation0.02------
loop invariant preservation0.02------
loop invariant preservation0.02------
loop invariant preservation0.02------
loop invariant preservation0.02------
loop invariant preservation0.07------
loop invariant preservation0.01------
loop invariant preservation0.05------
loop invariant preservation0.02------
loop invariant preservation0.02------
loop invariant preservation0.06------
loop invariant preservation0.01------
loop invariant preservation0.01------
loop invariant preservation0.04------
loop invariant preservation0.02------
loop invariant preservation0.03------
loop invariant preservation0.02------
loop invariant preservation0.01------
loop invariant preservation0.01------
loop invariant preservation0.02------
loop invariant preservation0.04------
loop invariant preservation0.27------
precondition0.01------
precondition0.01------
precondition0.01------
precondition0.01------
assertion0.02------
assertion0.02------
precondition0.02------
loop variant decrease0.04------
loop invariant preservation0.02------
loop invariant preservation0.02------
loop invariant preservation0.02------
loop invariant preservation0.03------
loop invariant preservation0.02------
loop invariant preservation0.02------
loop invariant preservation0.02------
loop invariant preservation0.06------
loop invariant preservation0.33------
loop invariant preservation0.02------
loop invariant preservation0.05------
loop invariant preservation0.11------
loop invariant preservation0.03------
loop invariant preservation0.09------
loop invariant preservation0.07------
loop invariant preservation0.06------
loop invariant preservation0.30------
loop invariant preservation0.03------
loop invariant preservation0.18------
loop invariant preservation0.02------
loop invariant preservation0.32------
loop invariant preservation0.01------
loop invariant preservation0.02------
loop invariant preservation0.02------
loop invariant preservation3.52------
precondition0.02------
assertion0.02------
assertion0.01------
precondition0.02------
loop variant decrease0.03------
loop invariant preservation0.00------
loop invariant preservation0.02------
loop invariant preservation0.02------
loop invariant preservation0.01------
loop invariant preservation0.02------
loop invariant preservation0.03------
loop invariant preservation0.02------
loop invariant preservation0.04------
loop invariant preservation0.21------
loop invariant preservation0.01------
loop invariant preservation0.05------
loop invariant preservation0.14------
loop invariant preservation0.02------
loop invariant preservation0.08------
loop invariant preservation0.04------
loop invariant preservation0.02------
loop invariant preservation0.04------
loop invariant preservation0.02------
loop invariant preservation0.14------
loop invariant preservation0.02------
loop invariant preservation0.04------
loop invariant preservation0.02------
loop invariant preservation0.02------
loop invariant preservation0.04------
loop invariant preservation0.03------
postcondition0.02------
postcondition0.02------
postcondition0.01------
postcondition0.02------