Schorr-Waite algorithm, proof via recursion
Schorr-Waite's graph marking algorithm, an alternative proof using recursion
Authors: Martin Clochard
Topics: Ghost code / Graph Algorithms / Pointer Programs
Tools: Why3
See also: VerifyThis 2016: Binary Tree Traversal
see also the index (by topic, by tool, by reference, by year)
Schorr-Waite algorithm for general-size records.
Author: Martin Clochard (Université Paris Sud)
Here the proof is carried out by proving an equivalent recursive program. The recursive program can be justified to be equivalent to the looping one: all side-effects/exception throwing are done by running the loop body (which features a minor modification to exit by exception), so the recursive programs amounts to execute an arbitrary number of time the loop body. It is immediately followed by an absurd statement to enforce the equivalence with the loop which runs its body an infinite number of times. Although the added recursive structure can be seen to be computationally irrelevant, it allows to discharge details about Schorr-Waite stack management through a recursive procedure proof. The method basically make explicit the derecursification used to obtain Schorr-Waite algorithm.
See example verifythis_2016_tree_traversal for details about the technique, applied to a similar algorithm for trees.
module Memory
Component-as-array memory model, with null pointers and arbitrary-sized memory blocks.
use int.Int use option.Option use map.Map
Memory locations
type loc
Null pointer
constant null : loc
Marks used by Schorr-Waite
type color = | White | Black (option int) type pmem = map loc (map int loc)
Memory blocks have two parts: a marking part containing in particular Schorr-Waite internal management data, and a sequence of pointers to other memory blocks.
type memory = abstract {
Associate block size to location.
block_size : map loc int;
Pointers to other memory blocks.
mutable accessor : pmem;
Marks.
mutable colors : map loc color; }
Global instance for memory
val memo : memory
null creation
val null () : loc ensures { result = null }
null test
val is_null (l:loc) : bool ensures { result <-> l = null }
Get block size associated to a given location
val get_block_size (l:loc) : int requires { l <> null } reads { memo } ensures { result = memo.block_size[l] /\ result >= 0 }
Access to a mark
val get_color (l:loc) : color requires { l <> null } reads { memo } ensures { result = memo.colors[l] }
Set a mark. We also impose the restriction that when a block is marked black, the given index must be coherent with the block size. This impose special treatment for 0-sized memory blocks.
val set_color (l:loc) (c:color) : unit requires { l <> null } requires { match c with | White -> true | Black None -> memo.block_size[l] = 0 | Black (Some ind) -> 0 <= ind < memo.block_size[l] end } writes { memo.colors } ensures { memo.colors = old (memo.colors[l <- c]) }
Getter/Setter for pointer buffer
val get_acc (l:loc) (k:int) : loc requires { l <> null /\ 0 <= k < memo.block_size[l] } reads { memo } ensures { result = memo.accessor[l][k] } val set_acc (l:loc) (k:int) (d:loc) : unit requires { l <> null /\ 0 <= k < memo.block_size[l] } writes { memo.accessor } ensures { memo.accessor = old (memo.accessor[l <- memo.accessor[l][k <- d]]) }
Take ghost snapshots of memory.
val ghost snapshot_acc () : pmem reads { memo } ensures { result = memo.accessor } val ghost snapshot_colors () : map loc color reads { memo } ensures { result = memo.colors } end module GraphShape
Define notions about the memory graph
use int.Int use set.Fset use map.Map use Memory predicate black (c:color) = c <> White predicate edge (m:memory) (x y:loc) = x <> null /\ (exists n. 0 <= n < m.block_size[x] /\ m.accessor[x][n] = y)
Edges
Paths
inductive path memory (x y:loc) = | path_nil : forall m x. path m x x | path_cons : forall m x y z. edge m x y /\ path m y z -> path m x z
DFS invariant. For technical reason, it must refer to different parts of the memory at different time. The graph structure is given via the initial memory, but the coloring is given via the current one.
predicate well_colored_on (graph gray:fset loc) (m:memory) (cl:map loc color) = subset gray graph /\ (forall x y. mem x graph /\ edge m x y /\ y <> null /\ black cl[x] -> mem x gray \/ black cl[y]) /\ (forall x. mem x gray -> black cl[x])
Unchanged only concerns the graph shape, not the marks
predicate unchanged (m1 m2:memory) = forall x n. x <> null /\ 0 <= n < m1.block_size[x] -> m2.accessor[x][n] = m1.accessor[x][n] end module SchorrWaite
Proof of Schorr-Waite algorithm
use int.Int use option.Option use set.Fset use map.Map use map.Const use ref.Ref use Memory use GraphShape let black (l: loc) : bool requires { l <> null } reads { memo } ensures { result <-> black memo.colors[l] } = match get_color l with White -> false | _ -> true end exception Stop let schorr_waite (root: loc) (ghost graph: fset loc) : unit
Root belong to graph (note: for simplicity, the graph set may (and likely does) contain the null pointer.
requires { mem root graph }
Graph is closed by following edges
requires { forall l n. mem l graph /\ l <> null /\ 0 <= n < memo.block_size[l] -> mem memo.accessor[l][n] graph } writes { memo.accessor, memo.colors }
The graph starts fully unmarked.
requires { forall x. mem x graph -> not black memo.colors[x] }
The graph structure is left unchanged.
ensures { unchanged (old memo) memo }
Every non-null location reachable from the root is marked black.
ensures { forall x. path (old memo) root x /\ x <> null -> black memo.colors[x] }
Every other location is left with its previous color.
ensures { forall x. not path (old memo) root x /\ x <> null -> memo.colors[x] = (old memo).colors[x] } = label I in let t = ref root in let p = ref (null ()) in
Schorr-Waite loop body.
let body () : unit
Loop body specification: mindlessly repeat the underlying code.
requires { !p <> null /\ (!t = null \/ black memo.colors[!t]) -> match memo.colors[!p] with | Black (Some m) -> 0 <= m < memo.block_size[!p] | _ -> false end } ensures { old (!p <> null \/ (!t <> null /\ not black memo.colors[!t])) } ensures { old (!t <> null /\ not black memo.colors[!t] /\ memo.block_size[!t] = 0) -> memo.colors = old memo.colors[!t <- Black None] /\ !t = old !t /\ !p = old (!p) /\ memo.accessor = old memo.accessor } ensures { old (!t <> null /\ not black memo.colors[!t] /\ memo.block_size[!t] > 0) -> memo.colors = old memo.colors[!t <- Black (Some 0)] /\ !t = old memo.accessor[!t][0] /\ !p = old (!t) /\ memo.accessor = old memo.accessor[!t <- memo.accessor[!t][0 <- !p]] } ensures { old (!t = null \/ black memo.colors[!t]) -> match old (memo.colors[!p]) with | Black (Some m) -> let n = m + 1 in if n = old (memo.block_size[!p]) then !t = old (!p) /\ !p = (old memo.accessor[!p])[m] /\ memo.colors = old (memo.colors) /\ memo.accessor = (old memo.accessor)[old !p <- (old memo.accessor[!p])[m <- old !t]] else !p = old !p /\ !t = (old memo.accessor[!p])[n] /\ memo.colors = (old memo.colors)[old !p <- Black (Some n)] /\ let pi = (old memo.accessor[!p])[m] in memo.accessor = (old memo.accessor)[old !p <- (old memo.accessor[!p])[n <- pi][m <- old !t]] | _ -> false end } raises { Stop -> old(!p = null /\ (!t = null \/ black memo.colors[!t])) /\ memo.colors = old memo.colors /\ memo.accessor = old memo.accessor } =
Minor modification to the loop: it exits by exception.
if is_null !p && (is_null !t || black !t) then raise Stop; if is_null !t || black !t then begin match get_color !p with | Black (Some m) -> let s = get_block_size !p in let n = m + 1 in if n = s then begin (* Pop *) let q = !t in t := !p; p := get_acc !p m; set_acc !t m q end else begin (* Swing *) let q = !t in t := get_acc !p n; set_acc !p n (get_acc !p m); set_acc !p m q; set_color !p (Black (Some n)) end | _ -> absurd end end else let s = get_block_size !t in if s = 0 then (* Mark & continue *) set_color !t (Black None) else begin (* Mark & Push *) let q = !p in p := !t; t := get_acc !t 0; set_acc !p 0 q; set_color !p (Black (Some 0)) end in let rec aux (ghost gray:fset loc) : unit (* DFS invariant *) requires { well_colored_on graph gray (memo at I) memo.colors } requires { mem !t graph } (* Non-marked nodes have unchanged structure with respect to the initial one. *) requires { forall x n. x <> null /\ not black memo.colors[x] /\ 0 <= n < memo.block_size[x] -> memo.accessor[x][n] = (memo.accessor at I)[x][n] } (* 'stack frames' are maintained correctly *) ensures { !t = old !t /\ !p = old !p } (* Pointer buffer is left unchanged *) ensures { unchanged (old memo) memo } (* Maintain DFS invariant *) ensures { well_colored_on graph gray (memo at I) memo.colors } (* The top node get marked *) ensures { black memo.colors[!t] \/ !t = null } (* May not mark unreachable node, neither change marked node. *) ensures { forall x. x <> null -> not path (memo at I) !t x \/ black (old memo.colors)[x] -> memo.colors[x] = (old memo.colors)[x] } (* Never 'exit' the loop during the recursive calls *) raises { Stop -> false } (* Terminates because there is a limited number of 'grayable' nodes. *) variant { cardinal graph - cardinal gray } = label J in if is_null !t || black !t then () else begin let s = get_block_size !t in let ghost g2 = add !t gray in assert { path (memo at I) !t !t }; body (); (* Either push or mark & continue. *) if s <> 0 then begin for i = 0 to s - 2 do (* Over all sub-blocs... *) (* DFS invariant. *) invariant { well_colored_on graph g2 (memo at I) memo.colors } (* Current stack frame invariants *) invariant { !p = !t at J } invariant { !t = (memo.accessor at I)[!p][i] } invariant { memo.colors[!p] = Black (Some i) } invariant { forall j. 0 <= j < s /\ j <> i -> memo.accessor[!p][j] = (memo.accessor at J)[!p][j] } invariant { memo.accessor[!p][i] = !p at J } (* Outside structure is unchanged. *) invariant { forall l n. l <> null /\ l <> !p /\ 0 <= n < memo.block_size[l] -> memo.accessor[l][n] = (memo.accessor at J)[l][n] } (* All nodes under !p & before i are either null or marked black. *) invariant { forall j. 0 <= j < i -> let l = memo.accessor[!p][j] in l = null \/ black memo.colors[l] } (* Unreachable/pre-marked blocks do not change. *) invariant { forall l. l <> null -> not path (memo at I) !p l \/ black (memo.colors at J)[l] -> memo.colors[l] = (memo.colors at J)[l] } label K in aux g2; (* Explore sub-bloc. *) body (); (* Swing to next sub-bloc. *) assert { !t = (memo.accessor at K)[!p][i+1] = (memo.accessor at J)[!p][i+1] } done; aux g2; (* Explore last sub-bloc. *) body (); (* Pop. *) end end in try aux (ghost empty); (* Explore main bloc *) body (); (* Exit *) absurd; (* Done. *) with Stop -> (* Need induction to recover path-based specification. *) assert { forall x y m. m = memo at I /\ x <> null /\ y <> null /\ mem x graph /\ black memo.colors[x] -> ([@induction] path m x y) -> black memo.colors[y] } end end
download ZIP archive