Wiki Agenda Contact English version

Publications : Mário Pereira

Retour
[13] Mário Pereira and António Ravara. Cameleer: A Deductive Verification Tool for OCaml. In Alexandra Silva and K. Rustan M. Leino, editors, Computer Aided Verification - 33rd International Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part II, volume 12760 of Lecture Notes in Computer Science, pages 677--689. Springer, 2021. [ bib | DOI | http ]
[12] Arthur Charguéraud, Jean-Christophe Filliâtre, Cláudio Belo Lourenço, and Mário Pereira. GOSPEL --- providing OCaml with a formal specification language. In Annabelle McIver and Maurice ter Beek, editors, FM 2019 23rd International Symposium on Formal Methods, Porto, Portugal, October 2019. [ bib | full text on HAL ]
[11] Mário Pereira. Tools and Techniques for the Verification of Modular Stateful Code. Thèse de doctorat, Université Paris-Saclay, December 2018. [ bib ]
[10] Martin Clochard, Léon Gondelman, and Mário Pereira. The Matrix reproved. Journal of Automated Reasoning, 60(3):365--383, 2018. [ bib | DOI | full text on HAL ]
[9] Jean-Christophe Filliâtre, Mário Pereira, and Simão Melo de Sousa. Vérification de programmes fortement impératifs avec Why3. In Sylvie Boldo and Nicolas Magaud, editors, Vingt-neuvièmes Journées Francophones des Langages Applicatifs, Banyuls-sur-mer, France, January 2018. [ bib | full text on HAL | .pdf ]
[8] Jean-Christophe Filliâtre, Léon Gondelman, Andrei Paskevich, Mário Pereira, and Simão Melo de Sousa. A toolchain to Produce Correct-by-Construction OCaml Programs. Technical report, 2018. artifact: https://www.lri.fr/~mpereira/correct_ocaml.ova. [ bib | full text on HAL | .pdf ]
[7] Arthur Charguéraud, Jean-Christophe Filliâtre, Mário Pereira, and François Pottier. VOCAL -- A Verified OCaml Library. ML Family Workshop, September 2017. [ bib | full text on HAL ]
[6] Mário Pereira. Défonctionnaliser pour prouver. In Sylvie Boldo and Julien Signoles, editors, Vingt-huitièmes Journées Francophones des Langages Applicatifs, Gourette, France, January 2017. [ bib | full text on HAL ]
[5] Jean-Christophe Filliâtre and Mário Pereira. Producing all ideals of a forest, formally (verification pearl). In Sandrine Blazy and Marsha Chechik, editors, 8th Working Conference on Verified Software: Theories, Tools and Experiments (VSTTE), Lecture Notes in Computer Science, Toronto, Canada, July 2016. Springer. [ bib | full text on HAL ]
[4] Martin Clochard, Léon Gondelman, and Mário Pereira. The Matrix reproved. In Sandrine Blazy and Marsha Chechik, editors, 8th Working Conference on Verified Software: Theories, Tools and Experiments (VSTTE), Lecture Notes in Computer Science, Toronto, Canada, July 2016. Springer. [ bib | full text on HAL ]
[3] Jean-Christophe Filliâtre and Mário Pereira. A modular way to reason about iteration. In Sanjai Rayadurgam and Oksana Tkachuk, editors, 8th NASA Formal Methods Symposium, volume 9690 of Lecture Notes in Computer Science, Minneapolis, MN, USA, June 2016. Springer. [ bib | full text on HAL ]
In this paper we present an approach to specify programs performing iterations. The idea is to specify iteration in terms of the nite sequence of the elements enumerated so far, and only those. In particular, we are able to deal with non-deterministic and possibly innite iteration. We show how to cope with the issue of an iteration no longer being consistent with mutable data. We validate our proposal using the deductive verication tool Why3 and two iteration paradigms, namely cursors and higher-order iterators. For each paradigm, we verify several implementations of iterators and client code. This is done in a modular way, i.e., the client code only relies on the specication of the iteration.

[2] Jean-Christophe Filliâtre and Mário Pereira. Itérer avec confiance. In Vingt-septièmes Journées Francophones des Langages Applicatifs, Saint-Malo, France, January 2016. [ bib | full text on HAL ]
[1] Mário Pereira, Jean-Christophe Filliâtre, and Simão Melo de Sousa. ARMY: a deductive verification platform for ARM programs using Why3. In INForum 2012, September 2012. [ bib | .pdf ]
Unstructured (low-level) programs tend to be challenging to prove correct, since the control flow is arbitrary complex and there are no obvious points in the code where to insert logical assertions. In this paper, we present a system to formally verify ARM programs, based on a flow sequentialization methodology and a formalized ARM semantics. This system, built upon the why3 verification platform, takes an annotated ARM program, turns it into a set of purely sequential flow programs, translates these programs' instructions into the corresponding formalized opcodes and finally calls the Why3 VCGen to generate the verification conditions that can then be discharged by provers. A prototype has been implemented and used to verify several programming examples.

Keywords: Why3

Retour
This page was generated by bibtex2html.