Algorithm 64 (quicksort)
Hoare's Algorithm 64
Auteurs: Jean-Christophe Filliâtre
Catégories: Array Data Structure / Sorting Algorithms
Outils: Why3
see also the index (by topic, by tool, by reference, by year)
module Algo64 use int.Int use ref.Ref use array.Array use array.ArrayPermut use array.IntArraySorted (* Algorithm 63 *) val partition (a: array int) (m n: int) (i j: ref int) (ghost x: ref int) : unit requires { 0 <= m < n < length a } writes { a, i, j } ensures { m <= !j < !i <= n } ensures { permut_sub (old a) a m (n+1) } ensures { forall r:int. m <= r <= !j -> a[r] <= !x } ensures { forall r:int. !j < r < !i -> a[r] = !x } ensures { forall r:int. !i <= r <= n -> a[r] >= !x } (* Algorithm 64 *) predicate qs_partition (t1 t2: array int) (m n i j: int) (x: int) = permut_sub t1 t2 m (n+1) /\ (forall k:int. m <= k <= j -> t2[k] <= x) /\ (forall k:int. j < k < i -> t2[k] = x) /\ (forall k:int. i <= k <= n -> t2[k] >= x) let rec quicksort (a:array int) (m n:int) : unit requires { 0 <= m <= n < length a } variant { n - m } ensures { permut_sub (old a) a m (n+1) } ensures { sorted_sub a m (n+1) } = if m < n then begin let i = ref 0 in let j = ref 0 in let ghost x = ref 42 in partition a m n i j x; label L1 in quicksort a m !j; assert { qs_partition (a at L1) a m n !i !j !x }; label L2 in quicksort a !i n; assert { qs_partition (a at L2) a m n !i !j !x } end let qs (a:array int) : unit ensures { permut_all (old a) a } ensures { sorted a } = if length a > 0 then quicksort a 0 (length a - 1) end
download ZIP archive