why3doc index index


Logarithmic-time mergeable priority queues implementation on top of AVL trees

Author: Martin Clochard

module PQueue

  use int.Int
  use avl.SelectionTypes
  use option.Option
  use ref.Ref
  use import seq.Seq as S
  use seq.FreeMonoid
  use mach.peano.Peano as I

Implementation parameters

  val constant balancing : I.t
    ensures { result > 0 }

Balancing level is kept abstract.

  scope D type t 'a end
  scope K type t end
  clone export key_type.KeyType with type t = D.t, type key = K.t
  clone preorder.Computable as CO with type t = K.t, axiom .

The Elements of the priority queue are indexed by totally ordered keys. Moreover, this order can be effectively decided.

Instantiation of the AVL tree module

  scope M
    type t = option K.t
    constant zero : t = None
    function op (x y:t) : t = match x with
      | None -> y
      | Some a -> match y with
        | None -> x
        | Some b -> if CO.lt b a
          then y
          else x
        end
      end
    let lemma assoc_m (x y z:t) : unit
      ensures { op x (op y z) = op (op x y) z }
    = match x , y , z with
      | None , _ , _ -> assert { true }
      | _ , None , _ -> assert { true }
      | _ , _ , None -> assert { true }
      | _ -> ()
      end
    let lemma neutral_m (x:t) : unit
      ensures { op x zero = x = op zero x }
    = match x with None -> () | _ -> assert { true } end
    clone export monoid.Monoid with type t = t,
      constant zero = zero,function op = op,lemma assoc,lemma neutral
    clone export monoid.MonoidSumDef with type M.t = t,
      constant M.zero = zero,function M.op = op,goal M.assoc,goal M.neutral
    let zero () : t
      ensures { result = None }
    = None
    let op (x y:t) : t
      ensures { result = op x y }
    = match x with
      | None -> y
      | Some a -> match y with
        | None -> x
        | Some b -> if CO.compare b a < 0
          then y
          else x
        end
      end

Use the minimum monoid to measure sequence of elements by their minimum value. We extend it with a minimum element in order to measure empty sequences.

  end

Elements are measured by their keys.

  scope D
    let function measure (d:D.t 'a) : M.t = Some d.key
  end

  type selector = unit

In priority queue, we are looking for the minimum element. No outside information is required to perform such search.

  predicate selection_possible 'e (s:seq 'g) = length s <> 0

We can only select the minimum in a non-empty sequence.

  predicate lower_bound (x:K.t) (s:seq (D.t 'a)) =
    forall i. 0 <= i < length s -> CO.le x s[i].key

  predicate lower_bound_strict (x:K.t) (s:seq (D.t 'a)) =
    forall i. 0 <= i < length s -> CO.lt x s[i].key

  predicate selected 'e (e:split (D.t 'a)) =
      match e.middle with
      | None -> false
      | Some d -> lower_bound d.key e.right /\ lower_bound_strict d.key e.left
      end

We are interested in split where the middle element is the minimum of the sequence. In order to make sure that the same element is returned at each search, we enforce that such split corresponds exactly to the first occurrence.

  let rec lemma monoid_sum_is_min (s:seq (D.t 'a)) : unit
    ensures {
      match M.agg D.measure s with
      | None -> length s = 0
      | Some a -> lower_bound a s /\
        exists i. 0 <= i < length s /\ CO.eq s[i].key a
      end }
    variant { length s }
  = if length s <> 0
    then begin
      let q = s[1 ..] in
      monoid_sum_is_min q;
      assert { M.agg D.measure s = M.op (D.measure s[0]) (M.agg D.measure q) };
      assert { forall i. 0 <= i < length q -> q[i] = s[i+1] }
    end

The summary of a sequence is indeed its minimum element.

  let lemma selected_is_min (s:'d) (e:split (D.t 'a)) : unit
    requires { selected s e }
    ensures { let s = rebuild e in match e.middle with
      | None -> false
      | Some d -> M.agg D.measure s = Some d.key
      end }
  = match e.middle with
    | None -> absurd
    | Some d ->
      monoid_sum_is_min e.left; monoid_sum_is_min e.right;
      assert {
        let l = M.agg D.measure e.left in
        let r = M.agg D.measure e.right in
        let t = M.agg D.measure (rebuild e) in
        let v0 = Some d.key in
        t = v0 by t = M.op l (M.op v0 r) /\ M.op l v0 = v0 = M.op v0 r
      }
    end

The middle element of a selected split is indeed the minimum.

  let selected_part (ghost lseq rseq:seq (D.t 'a))
    (s:unit) (sl:M.t) (d:D.t 'a) (sr:M.t) : part_base unit
    requires { sl = M.agg D.measure lseq /\ sr = M.agg D.measure rseq }
    returns { Here -> let e2 = { left = lseq;
        middle = Some d;
        right = rseq } in selected s e2
      | Left rsl -> selection_possible rsl lseq /\
        forall e. selected rsl e /\ rebuild e = lseq ->
          selected s (right_extend e d rseq)
          by match e.middle with
            | None -> false
            | Some d2 -> M.agg D.measure lseq = Some d2.key
              so lower_bound d2.key (cons d rseq)
              /\ lower_bound d2.key e.right
            end
      | Right rsr -> selection_possible rsr rseq /\
        forall e. selected rsr e /\ rebuild e = rseq ->
          selected s (left_extend lseq d e)
          by match e.middle with
            | None -> false
            | Some d2 -> M.agg D.measure rseq = Some d2.key
              so lower_bound_strict d2.key (snoc lseq d)
              /\ lower_bound_strict d2.key e.left
            end
    }
  = let kd = d.key in
    monoid_sum_is_min lseq;
    monoid_sum_is_min rseq;
    match sl , sr with
    | None , None -> Here
    | None , Some a -> if CO.compare kd a <= 0 then Here else Right ()
    | Some a , None -> if CO.compare kd a < 0 then Here else Left ()
    | Some a , Some b -> if CO.compare kd b <= 0
      then if CO.compare a kd <= 0 then Left () else Here
      else if CO.compare a b <= 0 then Left () else Right ()
    end

  clone avl.AVL as Sel with type selector = selector,
    predicate selection_possible = selection_possible,
    predicate selected = selected,
    val selected_part = selected_part,
    goal selection_empty,
    val balancing = balancing,
    type D.t = D.t,
    val D.measure = D.measure,
    type M.t = M.t,
    constant M.zero = M.zero,
    function M.op = M.op,
    goal M.assoc,
    goal M.neutral,
    function M.agg = M.agg,
    goal M.agg_empty,
    goal M.agg_sing,
    goal M.agg_cat,
    val M.zero = M.zero,
    val M.op = M.op

Full instantiation of the avl module.

Adaptation of specification to priority queues

  type t 'a = Sel.t 'a

Model: a bag of data with a minimum element. The point of the minimum is that we want the returned minimum element to be always the same, modulo preorder equivalence is not enough.

  type m 'a = {
    bag : D.t 'a -> int;
    minimum : D.t 'a;
    card : int;
  }

  use seq.Occ

Conversion from sequences to bags: from number of occurrences.

  let ghost function to_bag (s:seq 'a) : 'a -> int =
    fun x -> occ x s 0 (length s)

  let lemma to_bag_mem (x:'a) (s:seq 'a)
    ensures { s.to_bag x > 0 <-> exists i. 0 <= i < length s /\ s[i] = x}
  = assert { forall i. 0 <= i < length s /\ s[i] = x ->
      to_bag s x > 0
      by to_bag s x = to_bag s[.. i] x + to_bag s[i ..] x
      /\ to_bag s[i ..] x = to_bag s[i ..][1 ..] x + to_bag s[i ..][.. 1] x
      /\ to_bag s[i ..][.. 1] x = 1
    }

  let ghost function get_minimum_index (s:seq (D.t 'a)) : int
    requires { length s <> 0 }
    ensures { 0 <= result < length s }
    ensures { M.agg D.measure s = Some s[result].key }
    ensures { lower_bound_strict s[result].key s[.. result] }
    ensures { lower_bound s[result].key s[result ..] }
  = let r = ref 0 in
    for i = 0 to length s - 1 do
      invariant { lower_bound_strict s[!r].key s[.. !r] }
      invariant { lower_bound s[!r].key s[!r .. i] }
      invariant { 0 <= !r <= i /\ !r < length s }
      assert { s[.. i] == s[.. !r] ++ s[!r .. i] };
      if CO.compare s[i].key s[!r].key < 0 then r := i;
    done;
    assert {
      let e = { left = s[.. !r]; middle = Some s[!r]; right = s[!r+1 ..] } in
      selected () e /\ rebuild e == s
    };
    !r

Minimum extraction from a sequence. Partial function.

  let lemma split_gives_minimum (e:split (D.t 'a))
    requires { selected () e }
    ensures { e.middle = Some (rebuild e)[get_minimum_index (rebuild e)] }
  = let i = length e.left in
    let s = rebuild e in
    let j = get_minimum_index s in
    let ki = match e.middle with None -> absurd | Some d -> d.key end in
    assert { ki = s[i].key };
    let kj = s[j].key in
    if i <> j
    then
      let (ki,kj) = if i < j
        then (ki,kj)
        else (assert { s[j] = e.left[j] }; (kj,ki))
      in
      assert { CO.lt kj ki /\ CO.le ki kj }

  function m (t:t 'a) : m 'a =
    { bag = to_bag t;
      card = length t;
      minimum = t[get_minimum_index t] }
  meta coercion function m

Convert the avl tree to logical model.

  let lemma correction (t:t 'a) : unit
    ensures { forall d. 0 <= t.bag d <= t.card }
    ensures { t.card >= 0 /\ (t.card > 0 -> t.bag t.minimum > 0) }
    ensures { forall d. 0 < t.bag d -> CO.le t.minimum.key d.key }
  = if t.m.card > 0
    then let r0 = Sel.default_split () in
      let _ = Sel.split r0 () t in
      ()

Invariant over the logical model.

  let empty () : t 'a
    ensures { forall d:D.t 'a. result.m.bag d = 0 }
    ensures { result.m.card = 0 }
  = Sel.empty ()

Create an empty priority queue.

  let singleton (d:D.t 'a) : t 'a
    ensures { result.m.bag d = 1 /\
      forall d2:D.t 'a. d2 <> d -> result.m.bag d2 = 0 }
    ensures { result.m.card = 1 }
  = Sel.singleton d

Create a one-element priority queue.

  let is_empty (ghost rd:ref (D.t 'a)) (t:t 'a) : bool
    ensures { result -> forall d:D.t 'a. t.bag d = 0 }
    ensures { not result -> t.bag !rd > 0 }
    ensures { result <-> t.card = 0 }
  = let res = Sel.is_empty t in
    ghost if not res then rd := t.Sel.m.Sel.seq[0];
    res

Test emptyness of a priority queue.

  let merge (l r:t 'a) : t 'a
    ensures { forall d. result.bag d = l.bag d + r.bag d }
    ensures { result.card = l.card + r.card }
  = Sel.concat l r

Merge two priority queues.

  let lemma remove_count (l:seq 'a) (d:'a) (r:seq 'a) : unit
    ensures { to_bag (l ++ singleton d ++ r) d = to_bag (l++r) d + 1 }
    ensures { forall e. e <> d ->
      to_bag (l ++ singleton d ++ r) e = to_bag (l++r) e }
  = assert { forall e. to_bag (singleton d) e = if d = e then 1 else 0 }

Additional lemma about bag created from a sequence (removal in the middle).

  let extract_min (t:t 'a) : option (D.t 'a,t 'a)
    returns { None -> t.card = 0 /\ (forall d. t.bag d = 0)
      | Some (d,e:t 'a) -> t.card = e.card + 1 /\ t.bag d = e.bag d + 1 /\
        d = t.minimum /\ forall d2. d2 <> d -> t.bag d2 = e.bag d2 }
  = if Sel.is_empty t
    then None
    else
      let (o,e) = Sel.extract (Sel.default_split ()) () t in
      match o with
      | None -> absurd
      | Some d -> Some (d,e)
      end

Get and remove minimum element.

  let min (t:t 'a) : D.t 'a
    requires { t.card > 0 }
    ensures { t.bag result > 0 /\ result = t.minimum }
  = match Sel.get (Sel.default_split ()) () t with
    | None -> absurd
    | Some d -> d
    end

Get minimum element.

  let pop_min (t:t 'a) : t 'a
    requires { t.card > 0 }
    ensures { t.card = result.card + 1 /\
      t.bag t.minimum = result.bag t.minimum + 1 /\
      (forall d2. d2 <> t.minimum -> t.bag d2 = result.bag d2) }
  = let r = Sel.default_split () in
    let res = Sel.remove r () t in
    ghost match !r.middle with
    | None -> absurd
    | Some _ -> split_gives_minimum !r
    end;
    res

Pop minimum element.

  let add (d:D.t 'a) (t:t 'a) : t 'a
    ensures { result.bag d = t.bag d + 1 /\
      (forall d2. d2 <> d -> result.bag d2 = t.bag d2) }
    ensures { result.card = t.card + 1 }
  = assert { forall d2. (singleton d).to_bag d2 = if d2 = d then 1 else 0 };
    Sel.cons d t

end


Generated by why3doc 1.7.0