Binary search
Searching a sorted array for a given value, in logarithmic time.
Made famous by Bentley's Programming Pearls.
Auteurs: Jean-Christophe Filliâtre
Catégories: Array Data Structure / Searching Algorithms / Tricky termination / Exceptions
Outils: Why3
Références: The VerifyThis Benchmarks
see also the index (by topic, by tool, by reference, by year)
(* Binary search A classical example. Searches a sorted array for a given value v. *) module BinarySearch use int.Int use int.ComputerDivision use ref.Ref use array.Array (* the code and its specification *) exception Not_found (* raised to signal a search failure *) let binary_search (a: array int) (v: int) : int requires { forall i1 i2. 0 <= i1 <= i2 < length a -> a[i1] <= a[i2] } ensures { 0 <= result < length a /\ a[result] = v } raises { Not_found -> forall i. 0 <= i < length a -> a[i] <> v } = let ref l = 0 in let ref u = length a - 1 in while l <= u do invariant { 0 <= l /\ u < length a } invariant { forall i. 0 <= i < length a -> a[i] = v -> l <= i <= u } variant { u - l } let m = l + div (u - l) 2 in assert { l <= m <= u }; if a[m] < v then l := m + 1 else if a[m] > v then u := m - 1 else return m done; raise Not_found end (* A generalization: the midpoint is computed by some abstract function. The only requirement is that it lies between l and u. *) module BinarySearchAnyMidPoint use int.Int use ref.Ref use array.Array exception Not_found (* raised to signal a search failure *) val midpoint (l: int) (u: int) : int requires { l <= u } ensures { l <= result <= u } let binary_search (a: array int) (v: int) : int requires { forall i1 i2. 0 <= i1 <= i2 < length a -> a[i1] <= a[i2] } ensures { 0 <= result < length a /\ a[result] = v } raises { Not_found -> forall i. 0 <= i < length a -> a[i] <> v } = let ref l = 0 in let ref u = length a - 1 in while l <= u do invariant { 0 <= l /\ u < length a } invariant { forall i. 0 <= i < length a -> a[i] = v -> l <= i <= u } variant { u - l } let m = midpoint l u in if a[m] < v then l := m + 1 else if a[m] > v then u := m - 1 else return m done; raise Not_found end (* The following version of binary search is faster in practice, by being friendlier with the branch predictor of most processors. It also happens to be stable, since it always return the highest index. *) module BinarySearchBranchless use int.Int use int.ComputerDivision use ref.Ref use array.Array exception Not_found (* raised to signal a search failure *) let binary_search (a: array int) (v: int) : int requires { forall i1 i2. 0 <= i1 <= i2 < length a -> a[i1] <= a[i2] } ensures { 0 <= result < length a /\ a[result] = v } ensures { forall i. result < i < length a -> a[i] <> v } raises { Not_found -> forall i. 0 <= i < length a -> a[i] <> v } = let ref l = 0 in let ref s = length a in if s = 0 then raise Not_found; while s > 1 do invariant { 0 <= l /\ l + s <= length a /\ s >= 1 } invariant { forall i. 0 <= i < length a -> a[i] = v -> a[l] <= v /\ i < l + s } variant { s } let h = div s 2 in let m = l + h in l := if a[m] > v then l else m; s := s - h; done; if a[l] = v then l else raise Not_found end (* binary search using 32-bit integers *) module BinarySearchInt32 use int.Int use mach.int.Int32 use ref.Ref use mach.array.Array32 exception Not_found (* raised to signal a search failure *) let binary_search (a: array int32) (v: int32) : int32 requires { forall i1 i2. 0 <= i1 <= i2 < a.length -> a[i1] <= a[i2] } ensures { 0 <= result < a.length /\ a[result] = v } raises { Not_found -> forall i. 0 <= i < a.length -> a[i] <> v } = let ref l = 0 in let ref u = length a - 1 in while l <= u do invariant { 0 <= l /\ u < a.length } invariant { forall i. 0 <= i < a.length -> a[i] = v -> l <= i <= u } variant { u - l } let m = l + (u - l) / 2 in assert { l <= m <= u }; if a[m] < v then l := m + 1 else if a[m] > v then u := m - 1 else return m done; raise Not_found end (* A particular case with Boolean values (0 or 1) and a sentinel 1 at the end. We look for the first position containing a 1. *) module BinarySearchBoolean use int.Int use int.ComputerDivision use ref.Ref use array.Array let binary_search (a: array int) : int requires { 0 < a.length } requires { forall i j. 0 <= i <= j < a.length -> 0 <= a[i] <= a[j] <= 1 } requires { a[a.length - 1] = 1 } ensures { 0 <= result < a.length } ensures { a[result] = 1 } ensures { forall i. 0 <= i < result -> a[i] = 0 } = let ref lo = 0 in let ref hi = length a - 1 in while lo < hi do invariant { 0 <= lo <= hi < a.length } invariant { a[hi] = 1 } invariant { forall i. 0 <= i < lo -> a[i] = 0 } variant { hi - lo } let mid = lo + div (hi - lo) 2 in if a[mid] = 1 then hi := mid else lo := mid + 1 done; lo end module Complexity use int.Int use int.ComputerDivision use ref.Ref use array.Array let rec function log2 (n: int) : int variant { n } = if n <= 1 then 0 else 1 + log2 (div n 2) let rec lemma log2_monotone (x y: int) requires { x <= y } ensures { log2 x <= log2 y } variant { y } = if y > 1 then log2_monotone (div x 2) (div y 2) let function f (n: int) : int = if n = 0 then 0 else 1 + log2 n lemma upper_bound: forall n. n >= 2 -> f n <= 2 * log2 n val ref time: int let binary_search (a: array int) (v: int) : int requires { forall i1 i2. 0 <= i1 <= i2 < length a -> a[i1] <= a[i2] } requires { time = 0 } ensures { 0 <= result < length a && a[result] = v || result = -1 && forall i. 0 <= i < length a -> a[i] <> v } ensures { time - old time <= f (length a) } = let ref lo = 0 in let ref hi = length a in while lo < hi do invariant { 0 <= lo <= hi <= length a } invariant { forall i. 0 <= i < lo || hi <= i < length a -> a[i] <> v } invariant { (time - old time) + f (hi - lo) <= f (length a) } variant { hi - lo } let mid = lo + div (hi - lo) 2 in if a[mid] < v then lo <- mid + 1 else if a[mid] > v then hi <- mid else return mid; time <- time + 1 done; -1 end (* Search in a two-dimensional grid where all rows and columns are sorted. Here is an example: j +---+---+---+---+---+--> | 1 | 3 | 4 | 4 | 7*| +---+---+---+---+---+ | 1 | 4 | 6 | 6 | 8*| +---+---+---+---+---+ | 2 | 5 | 7 | 9*|11*| +---+---+---+---+---+ | 4 | 8 | 8*|12*|13 | +---+---+---+---+---+ | * i v Algorithm: start from the upper right corner and then move left (resp. down) when the value is greater (resp. smaller) than the value we search for. In the example above, the stars depict the elements that are examined when we search for the value 10. Here we end up outside of the grid and thus the search is unsuccessful. *) module TwoDimensional use int.Int use matrix.Matrix let search (m: matrix int) (v: int) : bool requires { [@expl: rows are sorted] forall i. 0 <= i < rows m -> forall j1 j2. 0 <= j1 <= j2 < columns m -> get m i j1 <= get m i j2 } requires { [@expl: columns are sorted] forall j. 0 <= j < columns m -> forall i1 i2. 0 <= i1 <= i2 < rows m -> get m i1 j <= get m i2 j } ensures { result <-> exists i j. 0 <= i < rows m && 0 <= j < columns m && get m i j = v } = let ref i = 0 in let ref j = columns m - 1 in while i < rows m && 0 <= j do invariant { 0 <= i <= rows m } invariant { -1 <= j < columns m } invariant { forall i' j'. 0 <= i' < rows m -> 0 <= j' < columns m -> i' < i || j' > j -> get m i' j' <> v } variant { rows m - i + j } let x = get m i j in if x = v then return true; if x < v then i <- i + 1 else j <- j - 1 done; return false end
download ZIP archive