Insertion sort (arrays)
Sorting an array of integers using insertion sort.
Auteurs: Jean-Christophe Filliâtre
Catégories: Array Data Structure / Sorting Algorithms
Outils: Why3
see also the index (by topic, by tool, by reference, by year)
Insertion sort.
Surprinsingly, the verification of insertion sort is more difficult than the proof of other, more efficient, sorting algorithms.
One reason is that insertion sort proceeds by shifting elements,
which means that, within the inner loop, the array is *not* a permutation
of the initial array. Below we make use of the functional array update
a[j <- v] to state that, if ever we put back v
at index j
, we get
an array that is a permutation of the original array.
module InsertionSort use int.Int use array.Array use array.IntArraySorted use array.ArrayPermut use array.ArrayEq let insertion_sort (a: array int) : unit ensures { sorted a } ensures { permut_all (old a) a } = for i = 1 to length a - 1 do (* a[0..i[ is sorted; now insert a[i] *) invariant { sorted_sub a 0 i /\ permut_all (old a) a } let v = a[i] in let ref j = i in while j > 0 && a[j - 1] > v do invariant { 0 <= j <= i } invariant { permut_all (old a) a[j <- v] } invariant { forall k1 k2. 0 <= k1 <= k2 <= i -> k1 <> j -> k2 <> j -> a[k1] <= a[k2] } invariant { forall k. j+1 <= k <= i -> v < a[k] } variant { j } label L in a[j] <- a[j - 1]; assert { exchange (a at L)[j <- v] a[j-1 <- v] (j - 1) j }; j <- j - 1 done; assert { forall k. 0 <= k < j -> a[k] <= v }; a[j] <- v done let test1 () = let a = make 3 0 in a[0] <- 7; a[1] <- 3; a[2] <- 1; insertion_sort a; a let test2 () ensures { result.length = 8 } = let a = make 8 0 in a[0] <- 53; a[1] <- 91; a[2] <- 17; a[3] <- -5; a[4] <- 413; a[5] <- 42; a[6] <- 69; a[7] <- 6; insertion_sort a; a exception BenchFailure let bench () raises { BenchFailure -> true } = let a = test2 () in if a[0] <> -5 then raise BenchFailure; if a[1] <> 6 then raise BenchFailure; if a[2] <> 17 then raise BenchFailure; if a[3] <> 42 then raise BenchFailure; if a[4] <> 53 then raise BenchFailure; if a[5] <> 69 then raise BenchFailure; if a[6] <> 91 then raise BenchFailure; if a[7] <> 413 then raise BenchFailure; a end module InsertionSortGen use int.Int use array.Array use array.ArrayPermut use array.ArrayEq type elt val predicate le elt elt clone map.MapSorted as M with type elt = elt, predicate le = le axiom le_refl: forall x:elt. le x x axiom le_asym: forall x y:elt. not (le x y) -> le y x axiom le_trans: forall x y z:elt. le x y /\ le y z -> le x z predicate sorted_sub (a : array elt) (l u : int) = M.sorted_sub a.elts l u predicate sorted (a : array elt) = M.sorted_sub a.elts 0 a.length let insertion_sort (a: array elt) : unit ensures { sorted a } ensures { permut_all (old a) a } = for i = 1 to length a - 1 do (* a[0..i[ is sorted; now insert a[i] *) invariant { sorted_sub a 0 i } invariant { permut_all (old a) a } let v = a[i] in let ref j = i in while j > 0 && not (le a[j - 1] v) do invariant { 0 <= j <= i } invariant { permut_all (old a) a[j <- v] } invariant { forall k1 k2. 0 <= k1 <= k2 <= i -> k1 <> j -> k2 <> j -> le a[k1] a[k2] } invariant { forall k. j+1 <= k <= i -> le v a[k] } variant { j } label L in a[j] <- a[j - 1]; assert { exchange (a at L)[j <- v] a[j-1 <- v] (j - 1) j }; j <- j - 1 done; assert { forall k. 0 <= k < j -> le a[k] v }; a[j] <- v done end
Using swaps (instead of shifting) is less efficient but at least we can expect the loop invariant for the inner loop to be simpler. And indeed it is.
The invariant below was suggested by Xavier Leroy (Collège de France).
Without surprise, the proof of the permutation property is also simpler.
module InsertionSortSwaps use int.Int use array.Array use array.ArraySwap use array.ArrayPermut let insertion_sort (a: array int) : unit ensures { forall p q. 0 <= p <= q < length a -> a[p] <= a[q] } ensures { permut_all (old a) a } = for i = 1 to length a - 1 do invariant { forall p q. 0 <= p <= q < i -> a[p] <= a[q] } invariant { permut_all (old a) a } let ref j = i in while j > 0 && a[j - 1] > a[j] do invariant { 0 <= j <= i } invariant { permut_all (old a) a } invariant { forall p q. 0 <= p <= q <= i -> q <> j -> a[p] <= a[q] } variant { j } swap a (j - 1) j; j <- j - 1 done done end
download ZIP archive