Two puzzles from Danvy and Goldberg's ``There and back again''
Auteurs: Jean-Christophe Filliâtre
Catégories: List Data Structure
Outils: Why3
see also the index (by topic, by tool, by reference, by year)
(* Two puzzles from Danvy and Goldberg's ``There and back again'' http://www.brics.dk/RS/02/12/BRICS-RS-02-12.pdf *) (* Computing a symbolic convolution: Given two lists [x1 , x2 , ..., xn−1 , xn ] and [y1 , y2 , ..., yn−1 , yn ], where n is not known in advance, write a function that constructs [(x1 , yn ), (x2 , yn−1 ), ..., (xn−1 , y2 ), (xn , y1 )] in n recursive calls and with no auxiliary list. *) module Convolution use int.Int use list.List use list.Length use list.Append use list.Reverse use list.Combine let rec convolution_rec (x y: list 'a) : (list ('a, 'a), list 'a) variant { x } requires { length x <= length y } ensures { let r, ys = result in exists y0: list 'a. y = y0 ++ ys && length y0 = length x && r = combine x (reverse y0) } = match x with | Nil -> Nil, y | Cons x0 xs -> match convolution_rec xs y with | r, Cons y0 ys -> Cons (x0, y0) r, ys | _ -> absurd end end let convolution (x y: list 'a) : list ('a, 'a) requires { length x = length y } ensures { result = combine x (reverse y) } = let r, _ = convolution_rec x y in r end (* Detecting a palindrome: Given a list of length n, where n is not known in advance, determine whether this list is a palindrome in ceil(n/2) recursive calls and with no auxiliary list. *) module Palindrome use int.Int use option.Option use list.List use list.Length use list.Append use list.Nth use list.NthLength use list.NthLengthAppend predicate pal (x: list 'a) (n: int) = forall i: int. 0 <= i < n -> nth i x = nth (n - 1 - i) x exception Exit type elt val predicate eq (x y: elt) ensures { result <-> x = y } let rec palindrome_rec (x y: list elt): list elt requires { length x >= length y } variant { x } ensures { exists x0: list elt. length x0 = length y && x = x0 ++ result } ensures { pal x (length y) } raises { Exit -> exists i: int. 0 <= i < length y && nth i x <> nth (length y - 1 - i) x } = match x, y with | _, Nil -> x | Cons _ xs, Cons _ Nil -> xs | Cons x0 xs, Cons _ (Cons _ ys) -> match palindrome_rec xs ys with | Cons x1 xs -> assert { nth (length y - 1) x = Some x1 }; if eq x0 x1 then xs else raise Exit | Nil -> absurd end | _ -> absurd end let palindrome (x: list elt) : bool ensures { result=True <-> pal x (length x) } = match palindrome_rec x x with _ -> True | exception Exit -> False end end
download ZIP archive